[ssx, LOVE Space Shooter X

Artifact
Extended Project Qualification

2018

ttxi - JLC

What is lssx?

An archaic piece of software ripped from a fusty
floppy disk is in-fact a US space-pilot training
simulator from the Cold War.

https://youtu.be/VVLTaXaBqdw

https://youtu.be/VVLTaXaBqdw

Statistics

- ~4000 lines of code, 8000 including libs.
- ~120 hours spent
- ~140 commits

Coding Activity in zephyr Languages in zephyr

il e
i
l o

- fa

L)

et

Coding Activity in Issx Languages in Issx

|

s

Several years experience in programming.
Never actually finished a game before.

Diverse skill-set required: geometry, trigonometry, design,
sound-editing, art etc.

Fun (it was not).

Aims were to create a small-scoped, space-esque,
shoot-em-up with semi-realistic physics and retro graphics,
akin to Asteroids or Space Invaders.

- Finish it
- Enjoyable, re-playable and simple experience

- Release onto itch.io

Inspiration & Research

Cold war paranoia, fantasy systems (Star Wars ICBM defence) -
Training simulator for cold-war pilots. Cold war computing,
Apollo Guidance Computer (AGC)

Looked into: BYTEPATH, Reassembly and Data Wing

BYTEPATH

Figure 1: BYTEPATH

Simple yet diverse gameplay, no camera, limited movement (a
la. Asteroids)

Reassembly

Figure 2: Reassembly

Vector graphics, heavy use of lighting and shaders, minimal Ul

DATA WING

0D&:831 Time Complete a lap in

013287 under O 10:000
011:508

DataUplink ™

Restart

Figure 3: DATA WING

Basic yet enjoyable movement mechanics, camera parallax.

Architecture

- Lua, a powerful, efficient, lightweight, embeddable
scripting language, used in programs such as Adobe
Lightroom and Civ5.

- LOVE, 2D game development framework, used in
commercial games such as "Move or Die".

- Box2D, 2D physics engine used to realistically simulate
interaction between rigid bodies, in development for over
10 years.

10

Lua and LOVE

function love.draw()
love.graphics.print("Hello World!", 400, 300)
love.graphics.circle("line", 500, 300, 10)
love.graphics.rectangle("line", 380, 300, 10, 40)
end

P

U Hello World! &)

"

Box2D

Box2D powers almost all physics interactions within the game,
it's proven to be reliable and fast and also has plenty
documentation to learn from.

World o
Where all the bodies live, used to set collsion callbacks (beginContact, preSolve etc.) il
Defines global gravity, tunes the physics simulation Fixture
Body ategory
’ ’ Fixture (sensor Contact §
No physical shape - controls mass, velocity, angular velocity. angle ete. | Foqers Geneon || Contact ks serouilan et
self:setSensor(true) contact ist that you can TP ’
Fixture Fixture Still has mass, but shapes will | | specifically access. amsicetandiiyiica celyiiicals adices ’
Size and shape (polygon circlel Abody can have Tl TR e 1.am a mouse and | will collide with cats, but not other mice.
rectangle), adds o mass of Body - muliple fixtures, which | | instead the world/body This list can change in
doesn' collide! inturn have their own, | | contact callbacks. the middle of a The category is for defining what you are, (mousefcat)
Restitution (velocity before:after ratio), individual shapes. (begin-contact & end-contact) | | wor1d:update(), so if .
Friction, Density (mass/area) will be called. all collisions are not The default behaviourls: P
Can be a sensor (e S I:am a thing and | will collide with every other thing., since
o, allfixtures by default have the same category/mask.
Mask
Maskis like saying, *| will collide with a .., (see Category)
‘The Category and Mask work together, both conditions
— must be satisfied such that both fixtures are allowed to
A special case which lists, in sequence, allthe collisions in the Soint ol
: joint
world between Fixtures, world:getContactList () . AT o The mask s for defining what you wil colide with,
Contacts make use contact callbacks which can call certain) in World
functions when certain classes of fixtures collide. This allows | Different types of | Body Fixture
you 1o use contact masks, which trigger certain functions foints simulate | Bodies can be.
depending on the fixtures mask (see :setFilterData). the interaction | connected via joints,
between objects | there are several joint
The existence of a contact in the list does not mean that the (bodies) to form | types that control how
two fixtures of the contact are actually touching - it only means | hinges / ropes / | the two(+) bodies.
their AABBS are touching. You can use isTouching() to pulleys etc. | interact.
check ifthey are physically touching.

Figure 4: Anatomy of Box2D
12

Important Box2D concepts

- Body, defines properties of an object you cannot see,
density, location, rotational inertia and others.

- Fixture, used to define material properties of an object,
e.g. friction, restitution.

- Shape, defines the actual physical shape for collisions.

Multiple fixtures can be added to a Body to create different
forms.

Shapes inside Fixtures, Fixtures inside Bodies.

13

How do you even write a game?

Idea — Program idea — Test — Debug / improve — Repeat
Organization is paramount, but not that much.

Most popular ways of developing bigger-than-small projects is
either with an Entity Component System or via Object
Oriented Programming.

14

Object Oriented Programming

Object Oriented Programming is a paradigm which attempts to
define the behaviour of real world objects via inheriting

behaviours.
Wheeled L
| Vehicle ===

OOP allows for Polymorphism, Encapsulation and Abstraction.

Large projects can be created in a sane, organised fashion.
15

Entity Component System

ECS follows composition over inheritance.

Every entity consists of components which add or define
additional behaviour. ECS is better for very large projects
because of it's inherent modularity.

A Pacman ghost has some of the following behaviours,

- int spookiness

1 1
I Placeable Seeing 1
I - int x - 1int sight_radius !
! - inty - boolean night_vision?
! - int z
1 1
1 |
I 1
! " = !
1
1 1
I 1
I 1
1 1
| Spooky 1
I 1
I 1
I |

ECS or OOP?

effort

yolo coding

time most indie games are
finished before they get here

Figure 5: https://github.com/SSYGEN/blog/issues/24

Choosing an 0O library

A library is a set of reusable functions that perform a set of
usually complex tasks that would take a long time to develop
yourself.

Lua doesn’t natively support OO, however the Lua community
have created a number of libraries, that allow you to do OOP
with Lua.

Tests were performed on popular OO libraries to see which
was the fastest/memory efficient.

- Creating instances of objects
- Performing methods
- Testing inheritance

From 10 to 1 million objects.

Creating objects

L S e 1) O 1 O B B
10° |-| — MoonScript /]

| |[— classic ,/f

10-1 ||—— middleclass /// E
hump.class 7

2 1072 // E
(¢D) - p E
= i / i
= -3 v i
107° E

= /]

- g]

l J i

107 v E
R :

1075 ELiiiil Ll Lol il Lol

10° 102 10° 10* 10° 10°
Number of objects created

19

Performing methods

107" F[— MoonScript E
|[— classic 1

1072 | —— middleclass £

- hump.class]

T q0- | :
@ g 1
E i]
T o0p E
100k E
10—6 7\\\\\\\ Ll Lol il Lol

10" 10? 10° 10% 10° 100
Number of methods ran

20

Testing inheritance

L S e 1) 1 O B B B
100 |-|—— MoonScript /4
-|— classic 7

_1 | |—— middleclass / |
10 hump.class // E

2 102} v ;
@ g y]
= i 7 1
T 03 d e
f 7 |

10 | // ,

| <]

1075 A Ll Lol il IR T

10° 102 10° 10* 10° 10°
Number of inherited objects created

21

Results and conclusion

MoonScript is the leader when dealing with a smaller amount
of objects (< 100).

MoonScript is not a library, but is a dynamic scripting language
that compiles into Lua, so it can be used with LOVE.

MoonScript chosen as it has the fastest OO, has greater
readability because of the reduced syntactic sugar and
therefore errors less likely to be made.

MoonScript — Lua = LOVE + Box2D

22

MoonScript compiled into Lua

The following MoonScript code:

Director.gameStart = () ->
Timer.every 2, ->
Pickup(math.random(2000), math.random(2000))
Asteroid(100+math.random(1800),
< 100+math.random(1860))

Is compiled into the following Lua code:

Director.gameStart = function()
return Timer.every(2, function()
Pickup(math.random(2000), math.random(2000))
return Asteroid(100 + math.random(1800), 100 +
< math.random(1800))
end)
end

Visually fewer lines of code. 23

Programming Philosophies

- Ease-of-use, complexity should be avoided, even at the
cost of speed

- Modularity, the engine should be easily extendable
through modular programming

- Readability, the code should be easy to read, with most
contents’ operation being understandable at first-viewing

24

Rapid prototyping

A small prototype was created in under a week to test if the
project was feasible.

Being a prototype, all the code used had to be re-written to

make sure the engine was scalable to the project demands
25

Deciding on a game loop

Initially toyed around with the idea of destructible ships,
thrusters, weapons etc. could be shot off, impairing your ship’s
abilities - a la Reassembly.

After two days of experimenting with the attachment code
using a flood fill algorithm | decided this direction would be

too complicated.
26

Alpha preview

A few weeks into development,
https://youtu.be/RZMrNIuRyXk

27

https://youtu.be/RZMrNIuRyXk

Mid-way through the project | realised the current method of
handling collisions was un-scalable and had to be re-worked.

| created zephyr, a Box2D wrapper designed to simplify physics
management by streamlining collision detection and
resolution between Box2D objects.

Approx 1500 lines of code.

Physics.beginContact = (a, b, coll) ->
-- pass a->b and b->a
1ssx.objects[a\getUserData().hash]\beginContact(b)
1ssx.objects[b\getUserData().hash]\beginContact(a)

28

zephyr and Entity Management

The main feature of zephyr is it's fast object identification with

the use of Universally Unique IDentifier's organised in a
hash-table.

A typical UUID looks like:
0264d794-e06a-4a8c-b018-db6laee5aa2b3

29

UUID’s visualized

Drawing all objects’ UUIDs:

d7Ezh 222 d43-47eb-b710-F3F9931kEEad

1761877 (317 -4810-888a-4akdzadize

a8k 21 e2E l‘___,SQ—L&‘b—iiei-aede—aé-

}la' et t4zdbcas ciob-488a3-aric-dber
T-4Z38-b4B4-aF3RaB1BaalE

° pAcaafce=4882-du;

All objects are placed inside a single table which is iterated
through running each objects’ draw/update functions.

env Issx objects

0081b370-986.
0002035772
00890649-8da

02200933-004...

0266bbed-e5t.
026d4902-963
02841081-001.

03a3ebYe-die
050da2al-e43

05¢12292-357...

06706623-cac.
068d0160-945
07169550-810.
08631341-efd,
0ddd2c8d-13c.

Oacbbeti-117..,

table: Oxd1eb74f0
table: Ox41edgb80
table: Ox40e6eeb0
table: 0x409c2710
table: Ox41ed51d8
table: Oxd14cd100
table: Oxd09cace0
table: 041287390
table: Ox41e9c178.
table: 0x409c6000
table: 0x40e70640
table: 0x409bb2e8
table: 0x409e0aa0
table: Ox41194418
table: 0x41231318
table: 0x4066b438

env Issx objects 14c6a89...

HP 10

creationTime 128.52525646701

Toufix Fixture: 0x03e83160

fovshp PolygonShape: 0x03e83110
hash 14c6a80c-38a7-4491-8513...
initalHP 10

ship table: Ox40ae5060

state idle

states table: Ox418985d0

env Issx objects 0091b37...

body Bady: 0x02faf750
creationTime 0.50655808600235

fixture Fixture: 0x02194dd0

hash 009fb370-986a-4e76-9900...
hp 1

removed false

scale 02

shape PolygonShape: 0x02/b1b20
X 138

y 882

zephyr also allows colliding fixtures to communicate with each
other and change each others values by the use of a buffer.

31

zephyr and Entity Management cont.

A typical interaction between two objects prints the following
to the debug log.

6.338s [spawn] Spawned Bullet

6.347s [spawn | Spawned Bullet

6.395s [important | beginContact() friggered

6.396s [collision] -> Bullet, k: 39b%afaf-d39f-4e51-a461-31408079c768
6.398s [collision] -> Asteroid, k: 07db2a45-a8f0-4d93-abe7-411ef3b0as0f

This shows a collision between an Asteroid and Bullet, with
their UUID’s defined as k, each object was found within 2
milliseconds.

32

Procedural Generation

Procedural Generation is a method of computationally
generating content. https://youtu.be/09KZFE1G6b0

Figure 6: Procedurally generated content

All explosions, asteroids, particle effects and

HP/ammo/fuel/oxygen pickups are procedurally generated
and placed throughout the world.

33

https://youtu.be/O9KZFE1G6b0

Artificial Intelligence

Player ship Al uses an algorithm to follow the players cursor by
applying forces to the ship. - Natural movement

Desired player
position

Enemy Al works in a similar fashion to the Player’s, except it
follows the players position.

Enemy Al also uses a Finite State Machine to decide on what
action it should take from: Idle, Chasing, Firing and Retreat.

Figure 7: Red: Fire, Yellow: Chase

States are decided based on HP, player distance and object
count in the world.

35

Resources, HUD (Heads-Up-Display)

Displays player’s Ship details, introduces a layer of difficulty
for player to manage.

- Ammo, no longer able to shoot

- Fuel, speed significantly reduced

- Oxygen, lose HP over time

- HP (Health Points), when = 0, game over

These can be restored by collecting pickups scattered
throughout the world.

36

Timers and "tweening”

- Timers, allows for events to be repeated / done at specific
intervals

- "Tweening”, In-betweening, modify a value over time with
different easing functions

-- Toggle light on and off every second
Timer.every(1, -> lamp\toggleLight())

-- Moves "ball" object to the position 200, 300

< over 4 seconds
flux.to(ball, 4, { x: 200, y: 300 })

Timers used to spawn new enemies and pickups in the world.
Tweening largely used in Ul, e.g. particle effects, explosions etc.

37

Shaders and Cameras

- Shaders, post-processing effect that modifies the
attributes of pixels, e.g. blurring, shadows and specular
highlights.

- Cameras, allows for panning, zooming and scaling

e.g. When player hit by a bullet the following occurs,

- Instance of class LineExplosion at player x/y created
- Tween chromatic aberration strength to random value
- Shake screen by x amount for y seconds

- Blink screen for 0.14x seconds

Higher score is better.

Staying alive for longer grants higher score.

Destroying more enemies/asteroids and collecting pickups
increases overall score.

A rank is calculated from overall score:
ACE, SS, S, A B, C, D, E F

39

Playtesting and Feedback

Feedback gathered from 8 play-testers on what they
liked /disliked and would like to see added/removed.
Common positive/negative feedback included:

- "well thought-out aesthetic”

- "fast, enjoyable pace and high learning curve”
- "annoying, jarring shooting noise”

- "too much camera shake”

Players rated game in current state an average of 8.5/10.

2

1(16.7%) 1(16.7%)

D(Ul%J 0(0‘%3 0(0‘%3 o:o‘%) 0(0‘%3 ozol%)

1 2 3 4 5 6 7 8] 10

o

40

Bugs

During play-testing several bugs were discovered that needed
to be resolved,

- Errors related to accessing nil objects
- Memory leaks when restarting game

Re: Issx - Fast-paced and twitchy space shmup 7
& by pgimeno » Wed Mar 14, 2018 7:06 pm

Thanks, it's much funnier now ©

Maybe add the controls to the itch.io page?

poimen
1got two other crashes. One seems Iike another instance of the same problem, but in a different place. The other looks poste 922
somewhat different, and seems to be related to the random creation of polygons. Here are both Sone:

Location
CODE: SELECT ALL

Error: components/Shield. lua
stack traceback
1ibs/hunp/ganestate 1ua: a9

Attempt to use destroyed body

1 function <libs/hump/ganestate. lua:5s>

n function

main.lua Unction <main.lua
ibs/hunp/ganestate . 1ua:39
main.lua o function <main.lua
(€1: in function xp

CODE: SELECT ALL
Error: modules/Physics/PolygonPhysicsshape. lua
stack traceback

Libs/hunp/ganestate . 1ua:59

Box2D assertion failed: area > b2_epsilon

7 function <libs/hump/gamestate.lua

[C1: in function 'newPolygonsha
modules/Physics/PolygonPhysicsshape.lua:18: in function ‘_init
components/Asteroid. lua " function

components/Asteroid. 1ua:90: in function
modules/Director.lua:31: in function 'ga

main.lua n function "

main.lua N function <main.lua:o2>

main n function <main.lua:36s>

{C1: in function 'xpc

41

Debugging and buffers/stacks

After researching the issue, it turned found out the following
situation was the culprit of errors related to nil objects.

Physics buffer

1 Modify parameters

Of Body (A) nil:modify(radius=58)
2 Delete object lssx.world:destroy(Body A)
Body (A) Body A = nil
Error!

Memory leaks were resolved by running a garbage collector on

occasion.
I»)

The solution...

Two buffers.

Physics buffer Removal buffer

Delete object

Modify parameters
1 1 Delete Body X

Body A radius = 50

Delete object

2 Add object to world 2
Delete Body A

Add instance of Bullet

3" 3

- Physics buffer: General buffer that handles
transformations and modifies parameters of objects

- Removal buffer: Buffer solely dedicated to the removal of
objects, ran at the end of a frame - after everything else is

finished.
43

After resolving previous issues with the game, [ssx was now
ready for release.

Released for free with an optional donation feature on itch.io,
a website for users to host, sell and download indie video
games

thangelog

Issx_final

Hor

Development log

Leave a comment

Live at: https://ttxi.itch.io/lssx "

https://ttxi.itch.io/lssx

Final thoughts

Overall pleased with outcome, achieved my goal of making a
short enjoyable game with a fair amount of re-playability.
Gained a strong understanding of Box2D and appreciation for
simple, elegant solutions to problems.

Things learned:

- Physics is hard

- Desire to work on a project / code quality drops off
exponentially over time

- 90% effort required for the last 10% of work

After EPQ I'd like to further develop zephyr make it easier for
people to develop their own games.

45

Special thanks & Questions.

- SSYGEN, STALKER-X camera library

- rxi, flux.lua tweening library, lovebird browser console
- vrld, HUMP utilities, moonshine post-processing library
- videah, splash-screen library

- Taehl, sound management library

- bfxr, used to generate game audio

- slime et al., LOVE framework

- leafo, MoonScript programming language

- d.notive, Background music
All software released under MIT license. - BIgX

46

