
Rev. XII

Level 3 EPQ
lssx, LÖVE Space Shooter X

ttxi∗,1
∗JLC

ABSTRACT Developing a game requires a multitude of problem solving techniques to be in sync with a wide breadth of skills;
ranging from geometry all the way to sound design. lssx is an attempt at creating a short yet re-playable experience that
simulates the paranoia and anxiety from the Cold War by imposing upon the player an increasingly difficult challenge, to stay alive.

"An archaic piece of software ripped from a fusty floppy disk is in-fact a US space-pilot training program from the
Cold War."

Contents

1 Project Goals 2
2 Relevant Research 2

A Game concepts . 2
A.1 Cold War paranoia 2
A.2 Space race 3

B Similar titles . 3
B.1 BYTEPATH 3
B.2 Reassembly 4
B.3 DATA WING 4
B.4 Conclusion 4

C Why LÖVE? . 5
D Architecture . 5

D.1 Entity Component System 5
D.2 Object Oriented Programming 5

E MoonScript vs. Lua with respect to OO 6
E.1 Classes . 6
E.2 Methods 7
E.3 Inheritance 7

F Box2D, the physics engine 8
F.1 Worlds . 8
F.2 Bodies . 8
F.3 Fixtures . 8
F.4 Shapes . 8
F.5 Joints . 8
F.6 Contacts 8

Manuscript compiled: Tuesday 27th March, 2018
1 ttxi | may.tt@protonmail.ch
Source for this project can be found at: https://github/com/twentytwoo/zephyr
CC-BY-NC-SA - LATEX2

3 Development 9
A Rapid prototyping 9
B Procedurally generated content 10

B.1 Asteroids 11
B.2 Particles 11

C Linear Interpolation and tweening 11
D Fuel, Health, Ammo, Slo-mo and Oxygen 12
E Pickups . 12
F Players and Ships 13

F.1 Player and Game controls 13
G Creating a Box2D wrapper 13

G.1 Hash tables 13
G.2 Custom Hashes 14

H Cameras . 15
H.1 hump.camera 15
H.2 STALKER-X 15

I Artificial Intelligence 15
I.1 Finite State Machine 15
I.2 Path finding 15

J Director and Game loop 16
K UI . 16

K.1 LineExplosion 16
K.2 HUD . 16

L Projectiles . 16
M Components . 17

M.1 Emitters . 17
M.2 Shields . 17

N States . 17
N.1 Splash . 17
N.2 MainMenu 17
N.3 Game . 17

O Documentation . 17

O.1 lssx . 17
O.2 Object . 18
O.3 PhysicsObject 18
O.4 PolygonPhysicsShape 18
O.5 CirclePhysicsShape 18
O.6 ChainPhysicsShape 18
O.7 Ship . 18
O.8 Asteroid . 18
O.9 Entity . 18
O.10 Player . 18
O.11 Enemy . 18
O.12 Projectile 18
O.13 Bullet . 18
O.14 Pickup . 18
O.15 Shield . 18
O.16 Cross . 18
O.17 FlashSq . 19
O.18 LineExplosion 19
O.19 HUD.elements.bar 19

4 Play-testing and improvements 19
A Q&A . 19
B Q&A results . 19
C Improvements . 19

5 Publishing 19
A itch.io . 19

6 Project overview 20
A Final thoughts . 20

7 Screenshots 20
8 Commit log 20
9 Bibliography 27

1. Project Goals

Initial project were are to create a small, casual space-esque shoot-
em-up with semi-realistic physics and retro graphics, akin to games
of the 80’s, a la. Asteroids.

• Create a polished game with plenty of replay-ability
• Publically release on itch.io and GitHub

2. Relevant Research

A. Game concepts

Considering we know that the game genre should be space-related,
we should look at the past to derive inspiration for lssx.

A.1 Cold War paranoia

The Cold War was a period of massive weapon stockpiling, societal
paranoia, unprecendeted tension and more importantly, a fantastical
imagination for the future of the human race, be it extinction by
nuclear weapons or the development of an idea: that we could fare
the stars and become a multi-planetary civilization.

It is often said that war drives the pace of technological advance-
ment, the Cold War was no exception, in this a period of tension
came huge development on nuclear weapons and ICMB’s - ad-
vanced systems were created to oversee the deployment of WMD’s
in the case of all-out war. This lead to the development of computer
systems such as the Mark 1, Whirlwind, ENIAC and others.

The Semi-Automatic Ground Environment system (SAGE) was
one of these such computers, created deep inside caverns, these
real-time computers tracked every movement in the sky in order to
protect the USA from a sneak nuclear attack.1

Figure 1 SAGE computer display2

The only relevant aspect of SAGE to a game is the aesthetics.
The SAGE used a state-of-the-art console display to monitor Soviet
bombers via the use of vector graphics projected onto a Situation
Display (SD) via electron beam, similar to CRT’s.

1 I-PROGRAMMER. (2018). Sage - computer of the cold war, [Online]. Available: http:
//www.i-programmer.info/history/9-machines/441-age.html (visited on 03/27/2018).

2 ttxi

http://www.i-programmer.info/history/9-machines/441-age.html
http://www.i-programmer.info/history/9-machines/441-age.html

lssx, LÖVE Space Shooter X

A.2 Space race

As part of Operation Paperclip, many prolific Nazi scientists were
imported over from Germany into the United States - the purpose of
this operation was to convince the scientists to simply work with the
Americans on rocketry. By 1944 the Germans had mostly perfected
their "vengeance weapon", the V-2 Rocket, or more affectionately
named "Retribution Weapon 2" - a liquid-propellant powered rocket
engine devised to strike British civilian hot-spots. Unfortunately for
the Germans this weapon came too late in the war to have any real
effect on the outcome of the war.

These scientists with a strong background in rocketry paved
the way for the Space race, indeed the father of rocket technology
and space sciences, Wernher von Braun, was imported from Nazi
Germany along with 1,600 other specialists to develop a system
(the Saturn V rocket) that would take the Americans to the Moon
before the Soviets.

Figure 2 US Space Race propaganda poster3

The victory of the Americans in the Space race lead to the
eventual dissolution of the USSR, but also a new found interest into
space exploration in the American people. Artists and musicians
created art which expressed their hopes, dreams and ideas of what
the future had to hold.

This concept was developed in lssx.

An archaic piece of software ripped from a fusty floppy
disk is in-fact a US space-pilot training program from the
Cold War.

lssx makes small references to the Cold War and Space race in
the form of assembler code scattered throughout the menu, game
over screen and other sections.

For example:

Figure 3 Subtle nod to CCFAS

The height of the Cold War was during 1962, the same time
as our fantasy game program was compiled. The code was also
compiled at CCFAS, Cape Canaveral Air Force Station, the initial
launch location of the Saturn V rocket.4

B. Similar titles
The first step of developing a game is analyzing similar titles for
inspiration, idea’s and techniques. Studying these successful titles
will also show what makes a game fun and enjoyable for players.

The following games will be analyzed:

• BYTEPATH
• Reassembly
• DATA WING

B.1 BYTEPATH

Created by SSYGEN,

BYTEPATH is a re-playable arcade shooter with a focus
on build theory-crafting. Use a massive skill tree, many
classes and ships to create your own builds and defeat
an ever increasing amount of enemies.

Figure 4 BYTEPATH gameplay

• Unique aesthetic
• Solid game play, focus on re-playability
• Repetitive yet enjoyable game loop
• Ability to customize ship

BYTEPATH has been developed with the LÖVE game frame-
work, written in the Lua programming language. The game has also
been released onto Steam, the main digital distribution platform
for PC. SSYGEN has also made an effort to integrate Steam into
BYTEPATH by the addition of Steam achievements. Achievements

4 Wikipedia. (2018). List of cape canaveral and merritt island launch sites, [Online].
Available: https://en.wikipedia.org/wiki/List_of_Cape_Canaveral_and_Merritt_
Island_launch_sites (visited on 03/27/2018).

3

https://en.wikipedia.org/wiki/List_of_Cape_Canaveral_and_Merritt_Island_launch_sites
https://en.wikipedia.org/wiki/List_of_Cape_Canaveral_and_Merritt_Island_launch_sites

are meta-goals defined outside the game’s parameters, achieve-
ments add an element of progression that hooks the player into
collecting all achievements and fulling completing the game.

BYTEPATH’s gameplay is mostly centered around a unique play
style wherein player attacks are stackable. The game is 2 dimen-
sional. 2D games allow developers to be able to quickly develop
game because of the simpler geometry math required (z-axis of
movement removed), 2D games are also less resource intensive,
hence their popularity on mobile devices.

B.2 Reassembly

Reassembly is a spaceship building and universe-exploration game
created by Anisoptera Games and released on the 19th of February,
2015.5

The main objective of the game is to collect resources,
expand and grow your fleet, and conquer your personal
galaxy, complete with stellar ambiance by the Peaks.

Figure 5 Reassembly gameplay

• Almost endless replay-ability due to ship-crafting mechanics
• Beautiful use of GSGL shaders and lighting create a feeling of

being in space
• Comfy soundtrack by the Peaks
• Massive spectrum of entity types

A large game play element of Reassembly is described in it’s own
name, players have the ability to create their own ships from a set of
geometric shapes, each geometric shape has its own parameters
that effect the performance of the ship as an entity. When shapes
are damaged they break off from the main ship and a tractor beam
reassembles the ship from a blueprint by collecting nearby transient
parts.

Reassembly’s creative, modular ship building has been com-
pared to playing with Lego. The in game world is a single large open
"galaxy", populated with rival factions. Players progress through the
game by collecting resources, building a fleet, capturing territory,
and activating damaged space stations.6

B.3 DATA WING

DATA WING is a mobile game developed by Dan Vogt and released
onto the Android operating system.

5 A. Games. (2017). Reassembly homepage, [Online]. Available: https : / / www .
anisopteragames.com (visited on 12/05/2017).

6 A. Games. (2017). Reassembly wikipedia, [Online]. Available: https://en.wikipedia.
org/wiki/Reassembly_(video_game (visited on 03/26/2018).

Blast through a stylish, neon landscape in this story-
driven, racing adventure. DATA WINGs deliver critical
data throughout the computer system, following Mother’s
orders without question. But when the system comes
under attack, and Mother becomes irrational, something
must be done!

Figure 6 DATA WING gameplay

• Simple movement mechanics
• Small scope results in very polished product
• Strong usage of camera parallax - not overused however

DATA WING’s simplistic game play match perfectly with the mo-
bile platform. Mobile players often prefer a casual experience which
DATA WING is able to provide by mixing up racing and puzzle-
solving, wrapped up in a bold narrative that packs an emotional
clout.

One part of DATA WING that seemed especially important in
shaping the game’s aesthetic is the subtle use of camera parallax.

Figure 7 Camera parallax

The parallax in DATA WING gives the user a sense of depth by
moving objects at different velocities depending on their displace-
ment from a virtual lens, shown in Figure 7. In most games parallax
is achieved by separating groups of objects into layers which are
moved independently of the player by some feedback.

B.4 Conclusion

Each game has a different lesson to teach, a different style to show
and all have displayed different and unique methods to achieve the
most important aspect of any game, fun game-play. The main points
gathered are:

4 ttxi

https://www.anisopteragames.com
https://www.anisopteragames.com
https://en.wikipedia.org/wiki/Reassembly_(video_game
https://en.wikipedia.org/wiki/Reassembly_(video_game

lssx, LÖVE Space Shooter X

• Emphasize on-screen particle / enemy count

– High object count makes the game seem more interesting
and fun to play as the player has more things to manage
in mind, managing several aspects of game-play makes
game less boring to play overall.

• Shaders

– All three games have some form of shaders, from chro-
matic aberration to bloom which enhance the aesthetics
of the game by adding interesting computer generated
effects to the programmed graphics.

• Camera parallax

– Reassembly and DATA WING use camera parallax heav-
ily to make their UI and background effects more inter-
esting and polished. Camera parallax also creates a
feeling of motion when used in conjunction with player
movement.

• First 30 seconds must be fun

– Quoted from ex-BUNGIE developer Jaime Griesemer, "if
you don’t nail that 30 seconds, you’re not gonna have a
great game"

C. Why LÖVE?

LÖVE (aka Love2D) is a free, lightweight gamedev plat-
form developed by a vibrant community, enabling every-
one to create 2D games relatively quickly.

Put simply, LÖVE is a blank canvas, where one is truly able
to create whatever one wishes - no guidelines, design patterns or
systems are enforced by the framework.

The programmer is able to create almost anything given enough
effort and time via the incredibly powerful yet simple LÖVE Applica-
tion Interface Program (API). LÖVE is mostly targeted at 2D games
(hence why it’s commonly referred to as "love2d"), however this
freedom has allowed developers to simulate three dimensions via
the use of ray-casting or by rendering millions of triangles with 3D
math.

LÖVE is unique in the aspect that given all its simplicity, sophis-
ticated projects can be created - the only limit with LÖVE is the
developers imagination and skill.

Figure 8 LÖVE logo

D. Architecture
A paramount component to writing any project is organization. If this
key foundation is not laid out properly, a project has the tendency to
spiral out of control in terms of complexity - this has the added effect
of un-agile, un-flexible and often broken code. When projects are
developed to such a scale such that the body of it cannot imagined
in the mind, one relies on well written code to behave appropriately,
regardless of state and IO.

In order to achieve this, several programming paradigms have
been created in an attempt to encapsulate code into neat packages
that know nothing of each other and deal only with streams of inputs
and outputs.

This behaviour is known as "modularity". Modular code allows
the programmer to develop applications in the form of many discreet
modules all juxtaposed and working together in harmony. These
modules can be swapped in and out, behaviour altered or removed
without significant effect on the rest of the program as a whole.

D.1 Entity Component System

An Entity Component System (ECS) is an architectural pattern that
follows values composition over inheritance. This allows for great
flexibility when defining entities. Every entity consists of one or more
components who’s behaviours can be modified via the addition or
removal of said components.

Structuring entities with components eliminates the ambiguity
of wide inheritance hierarchies that is often the case with Object
Oriented Programming. Common ECS approaches are highly com-
patible and often combined with data oriented design techniques.7

Figure 9 Pacman ghost ECS

A major disadvantage to an ECS is the sheer amount of founda-
tion required before any actual development can be begun. ECS is
used at greater frequency in very large applications and is usually
not suitable for smaller projects, Figure 108 explains.

Figure 10 Effort against time with regards to ECS

The time and effort required to set up a complete ECS is often
wasted and unnecessary as the majority of single-developer projects
do not reach the scale where the full power of an ECS can be fully
utilized, thus a different approach should be taken.

D.2 Object Oriented Programming

Object Orientation (OO) is a programming paradigm that refers
to a type of programming in which programmers define not only
the data type of a data structure, but also the types of operations
(functions/methods) that can be applied to the data structure.

7 Wikipedia. (2018). Entity component system, [Online]. Available: https://en.wikipedia.
org/wiki/Entity%E2%80%93component%E2%80%93system (visited on 03/06/2018).

8 SSYGEN. (2018). Ecs vs yolo coding, [Online]. Available: https : / / github . com /
SSYGEN/blog/issues/24 (visited on 03/06/2018).

5

https://en.wikipedia.org/wiki/Entity%E2%80%93component%E2%80%93system
https://en.wikipedia.org/wiki/Entity%E2%80%93component%E2%80%93system
https://github.com/SSYGEN/blog/issues/24
https://github.com/SSYGEN/blog/issues/24

The three cornerstones of object orientation are Classes, Meth-
ods and Inheritance.

Consider the following image, Figure 11.

Class Prey Class Predator

Method: Catch()Method: Hide()

Class Animal

Method: Eat(), Sleep(), Die()

Class Cat

Method: Meow()

Class Mouse

Method: Sprint()

Class Dog

Method: Bark()

Figure 11 A simple class structure

The class Animal is the base or parent class, and that Prey
and Predator are children, similarly Cat and Dog are children of
Predator and Mouse is a child of Prey.

Each class has its own methods, a method is an action in which
an object, for example a cat, would take. In this example a Cat
can Catch() a mouse, but it can also Eat(), Sleep() and Die(),
children inherit their parents methods.

This way of constructing programs allows code to be abstracted
into forms that are easily understood by relating objects into real
world examples. An instance is a specific realization of any object,
for example:

Listing 1 MoonScript OO example

-- parent class Animal has x/y position
class Animal

new: (@x, @y) =>

-- class Dog is and Animal
class Dog extends Animal

new: (@age, @hungriness) =>
super!
print("Bark!")

chew: (object) =>
super\Eat(object)
print("Mmmm...!")

-- Instances of object class Dog
Poodle = Dog(12, 0.1)
Beagle = Dog(2, 0.5)

-- Instance of class Bone
Tasty_snack = Bone!

-- Performing methods on instances
Poodle\chew(Tasty_snack) --> "Mmmm...!"

Objects can also have attributes, for example if a Vehicle was
a parent class, Cars and Motorbikes would be typical children
classes. An attribute of these classes would be the number of
wheels, 4 for a Car and 2 for a Motorbike.

Ultimately Object Orientated programming provides a way to
program polymorphism and encapsulation into a game, abstract-

ing problems into simple, human-understandable concepts with an
overall aim of reducing total mental load on the programmer.

E. MoonScript vs. Lua with respect to OO

LÖVE by default uses Lua, Lua itself was designed as a scripting
language and was not designed to be used as a language to be
used to develop games. Due to this, it has no native OO capabilities
(unlike other languages such as C++ or Java).

As a workaround, Lua later introduced the concepts of metameth-
ods and metatables which allowed users to create their own "ver-
sion" of OO. This method of doing OO results in verbose, ugly code
which often times introduce bugs.

Luckily, there have been several attempts to make OO easier in
Lua via the creation of custom libraries. A library is a collection of
non-volatile resources used by computer programs, often to develop
software. These may include configuration data, documentation,
help data, message templates, pre-written code and subroutines,
classes, values or type specifications.

The most notable Lua OO libraries being middleclass, classic
and hump.class. Unfortunately they do suffer from overhead be-
cause of the added abstraction (writing metamethods/tables directly
is faster but more complex, it’s a tradeoff.). MoonScript was de-
signed to solve this problem.

MoonScript is a dynamic scripting language that compiles into
Lua. It hands over the power of one of the fastest scripting lan-
guages combined with a rich set of features to the user. The pre-
compilation process removes all the overhead from a OO library
since the interpreter can hard-code values in a way a human could
not without significant planning and time.

A series of tests were devised to judge which of these libraries
was the fastest, or faster than MoonScript. The experiments tested
the main features of OO, Objects, Methods and Inheritance.

E.1 Classes

To test classes, a base class called X was created and inserted into
a table t in ever-increasing quantities, from 100 to 10 million.9

Listing 2 OO Test: 1

class X
new: (@x, @y) =>

t = {}
for z=1, 6, 0.1 do

for i=1, 10^z do
t[#t+1] = X(10, 20)

9 twentytwoo. (2017). Classes creation test code, [Online]. Available: https://gist.github.
com/twentytwoo/38df41452b7ab047c316b0a8cdf34252 (visited on 12/06/2017).

6 ttxi

https://gist.github.com/twentytwoo/38df41452b7ab047c316b0a8cdf34252
https://gist.github.com/twentytwoo/38df41452b7ab047c316b0a8cdf34252

lssx, LÖVE Space Shooter X

101 102 103 104 105 106
10−5

10−4

10−3

10−2

10−1

100

Number of objects created

Ti
m

e
(s

)

MoonScript
classic

middleclass
hump.class

The data shows that initially, MoonScript is the fastest at creat-
ing objects, and later all libraries become similar in speed when
>1,000 objects created indicating a constant amount of memory is
used when creating objects after the initialization. middleclass lags
behind, being quite a lot slower than the others.

E.2 Methods

Testing methods required the method moveXtoY to be added to
class X, this method simply moves the attribute X to Y, as the name
implies.10

Listing 3 OO Test: 2

class X
new: (@x, @y) =>
moveXtoY: () =>

@y = @x

for z=1, 6, 0.1 do
for i=1, 10^z do

t[i]\moveXtoY()

101 102 103 104 105 106
10−6

10−5

10−4

10−3

10−2

10−1

Number of methods ran

Ti
m

e
(s

)

MoonScript
classic

middleclass
hump.class

10 twentytwoo. (2017). Methods test code, [Online]. Available: https://gist.github.com/
twentytwoo/7f23960802416bf175fb557fe3ee9781 (visited on 12/06/2017).

As expected there is very little difference in the speed of exe-
cution amongst libraries since changing attributes is a very simple
process and quite possibly simplified by the Lua compiler.

E.3 Inheritance

To test inheritance, a class named Y was created which is the child
of parent X.11

Listing 4 OO Test: 3

class Y extends X
new: (...) =>

super(...)

t = {}
for z=1, 6, 0.1 do

for i=1, 10^z do
t[#t+1] = Y(10, 20)

101 102 103 104 105 106

10−5

10−4

10−3

10−2

10−1

100

Number of inherited objects created

Ti
m

e
(s

)

MoonScript
classic

middleclass
hump.class

middleclass again shows significant delays in creating objects
and inheritance, MoonScript however is initially faster than all other
libraries.

MoonScript chosen as it has the fastest OO, has greater read-
ability because of the reduced syntactic sugar and therefore errors
less likely to be made.

MoonScript→ Lua⇒ LOVE + Box2D

The following MoonScript code:

Listing 5 MoonScript examplar

Director.gameStart = () ->
Timer.every 2, ->

Pickup(math.random(2000), math.random(2000))
Asteroid(100+math.random(1800), 100+math.random(1800))

Is compiled into the following Lua code:
Visually fewer lines of code reduces time taken to write code with

the same functionality, it also reduces the chance of errors since
syntax sugar is dramatically reduced.

11 twentytwoo. (2017). Inheritance test code, [Online]. Available: https://gist.github.com/
twentytwoo/75419cc33364571cd2cfc45d506c6d71 (visited on 12/06/2017).

7

https://gist.github.com/twentytwoo/7f23960802416bf175fb557fe3ee9781
https://gist.github.com/twentytwoo/7f23960802416bf175fb557fe3ee9781
https://gist.github.com/twentytwoo/75419cc33364571cd2cfc45d506c6d71
https://gist.github.com/twentytwoo/75419cc33364571cd2cfc45d506c6d71

Listing 6 Compiled MoonScript code

Director.gameStart = function()
return Timer.every(2, function()

Pickup(math.random(2000), math.random(2000))
return Asteroid(100 + math.random(1800), 100 +

math.random(1800))↪→
end)

end

F. Box2D, the physics engine
Box2D is an open source C++ engine for simulating rigid bodies
in 2D.12 It is widely considered to be difficult to use because of its
complexity.13. In order to create realistic physics in my game I have
to fully understand the workings of Box2D. The LÖVE framework
has implemented a version of Box2D as closely as possible, this
module is known as love.physics.

F.1 Worlds

All objects in Box2D exist in what is known as a "world", A world is
simply an object that contains all bodies and joints, it also controls
the global gravity and most importantly, set the collision callbacks
for the world.

A collision callback is a function that is called when ever one of
the four conditions is met, they are named aptly as:

• beginContact, Gets called when two fixtures begin to overlap.
• endContact, Gets called when two fixtures cease to overlap.

This will also be called outside of a world update, when colliding
objects are destroyed.

• preSolve, Gets called before a collision gets resolved.
• postSolve, Gets called after the collision has been resolved.

And can be set simply;

Listing 7 Setting Box2D world callbacks

world = love.physics.newWorld(0, 0, true)
world\setCallbacks(beginContact, endContact, preSolve,

postSolve)↪→

There are a one or two caveats to these functions, the major one
is that objects inside the world cannot be destroyed from inside the
beginContact function. For example, if a bullet were to hit a player,
you cannot destroy the bullet from inside beginContact, in order to
overcome this problem I created a buffer. Commands can be added
to this buffer and will be ran once the world update has ticked over.
This means we can add instructions to destroy an object from inside
the contact function, but they won’t actually be run until a later time.

F.2 Bodies

Bodies can be thought of as a container of "stuff", a body has
velocity, position and an angle. Separating the angle of the body
from its contents allows us to manipulate the objects inside without
having to deal with any awkward trigonometry.

This introduces another layer of complication, local and world
coordinates. Local coordinates deal with the coordinates of objects

12 Box2D. (2017). A 2d physics engine for games, [Online]. Available: http://box2d.org
(visited on 12/06/2017).

13 as quoted perRude. (2017). Love.physics, [Online]. Available: https://love2d.org/
wiki / love . physics (visited on 12/06/2017): "love.physics is not lightweight, and
not even remotely simple to use. It’s a ten-ton hammer designed for heavy-lifting
(er...hammer...lifting?"

Listing 8 General physics handling

Physics.update = (dt) ->
lssx.world\update(dt)
Physics.runBuffer()

Physics.addToBuffer = (func, hash) ->
hash = hash or UUID()
Physics.buffer[#Physics.buffer+1] = {func, hash}

Physics.runBuffer = () ->
hash = {}
if #Physics.buffer > 0 then

for i = #Physics.buffer, 1, -1 do
-- Detect if we've already seen this function before
-- So we don't try and delete the same body twice
if (not hash[Physics.buffer[i][2]]) then

Physics.buffer[i][1]()
hash[Physics.buffer[i][2]] = true
table.remove(Physics.buffer, i)

within the body, world coordinates deals with the coordinates of the
body on the LÖVE co-ordinate plane.

Inside a body you have things called fixtures and contacts.

F.3 Fixtures

A fixture a layer of abstraction between bodies and their shape, a
fixture has no shape, yet it has density, restitution and friction, a
fixture also deals with collision masks, group index’s and categories
which describe what fixture’s shapes should have collision resolution
with what.

A fixture is used to attach shapes to bodies, fixtures cannot be
cloned, unlike shapes.

F.4 Shapes

Shapes are solid 2D geometrical objects which have form and
control mass and deal with the actual collision resolution between
other shapes. Shapes are attached to a Body via a Fixture. The
Shape object is copied when this happens. The Shape’s position is
relative to the position of the Body it has been attached to.

There are five different types of shapes:

• ChainShape, A ChainShape consists of multiple line seg-
ments. It can be used to create the boundaries of terrain.
The shape does not have volume and can only collide with
PolygonShape and CircleShape.

• CircleShape, Circle extends Shape and adds a radius and a
local position.

• EdgeShape,
• PolygonShape, A PolygonShape is a convex polygon with up

to 8 vertices. Concave polygons can be created with multiple
shapes and fixture in one body.

• RectangleShape, Shorthand for creating rectangular Polygon-
Shapes.

F.5 Joints

Joints are used to attach multiple bodies together to interact in
unique ways.

F.6 Contacts

The world has a "contact list", which lists all the collisions between
objects Axis-Aligned Bounding Boxes (AABB’s), this list can be

8 ttxi

http://box2d.org
https://love2d.org/wiki/love.physics
https://love2d.org/wiki/love.physics

lssx, LÖVE Space Shooter X

looked through to determine what is colliding with what, albeit some-
what inefficiently, as such they won’t be used in this project much.

Figure 12 shows the relationship of love.physics components in
a simpler fashion.

3. Development

A. Rapid prototyping
To find out if such a project requiring complex physics simulation was
possible, a principle of rapid development was followed, wherein
one creates a basic game very quickly to prove that a concept is
possible. The code is not meant to be smart or scalable. Satisfied
with the results of the prototype, one can carry on and create a
more intelligent design.

Figure 13 A rapidly prototyped Box2D spaceship simulator

Initially the concept of destructible ships was explored by the
addition of an algorithm that would detect nearby structs from other
bodies, and copy all the shapes and fixtures from that body into our
own.

Structs detect nearby structs and attach to each other (depend-
ing on which fixture is attached to the command module) if some
state is on, if this state is off, then all unused structs are set to sleep
(not detecting other fixtures)

Structs have no collision resolution because they are set to
sensors - they let the game know something collided with them such
that some specific function can be executed.

Shapes connected to a CommandModule (CM) will search for
other structs within a given radius, if any structs are detected, the
beginContact Box2D callback is triggered, an algorithm will run
through the body that is not connected to the CM and clone all
fixtures to the CM body and translate all vertices’s of the fixtures to
the struct.

ᶺ

ᶺ

Figure 14 Struct detection and other shape translation

Fixtures are only attached via structs, structs are specific posi-
tions on the shape where other fixtures can attach to the fixture.

Body
Spaceship

Fixture
Command Module

Shape
Rectangle

Fixture

Shape
Rectangle

Body

Fixture

Shape
Rectangle

Body
Spaceship

Fixture
Command Module

Shape
Rectangle

Fixture

Shape
Rectangle

Fixture

Shape
Rectangle

Figure 15 The process of cloning other bodies contents into self

Fixture

Shape
Rectangle Sensor

Shape
Circle

Sensor

Shape
Circle

Sensor

Shape
Circle

Sensor

Shape
Circle

Sensor

Shape
Circle

Fixture

Shape
Rectangle

Connected structs create connections between fixtures

Figure 16 Structs

• Detect which fixture is connected to the CM
• Clone all the fixtures from the body that isn’t connected, use

a transformation matrix to translate the shapes vertices to the
CM Struct position.

• Destroy the other body

The following shows the most basic example of the algorithm,
wherein the CommandModule (smaller shape) connects with a
Square.

9

World
Where all the bodies live, used to set collision callbacks (beginContact, preSolve etc.)
Defines global gravity, tunes the physics simulation.

Body
No physical shape - controls mass, velocity, angular velocity., angle etc.

Fixture
Size and shape (polygon/ circle/
rectangle), adds to mass of Body -
doesn’t collide!
Restitution (velocity before:after ratio),
Friction, Density (mass/area)
Can be a sensor

Shape
Resolves collisions
(create a shape -> add it to fixture)

Fixture
A body can have
multiple fixtures, which
in turn have their own,
individual shapes.

Shape
The same shape can
be used with multiple
different fixtures

Body
Bodies can be
connected via joints,
there are several joint
types that control how
the two(+) bodies
interact.

Fixture

Shape

Joint
No body, present

in World
Different types of

joints simulate
the interaction

between objects
(bodies) to form
hinges / ropes /

pulleys etc.

Fixture (sensor)
self.isSensor = true
self:setSensor(true)
Still has mass, but shapes will
not have collision resolution -
instead the world/body
contact callbacks
(begin-contact & end-contact)
will be called.

Shape

Contact
A special case which lists, in sequence, all the collisions in the
world between Fixtures, world:getContactList().

Contacts make use contact callbacks which can call certain
functions when certain classes of fixtures collide. This allows
you to use contact masks, which trigger certain functions
depending on the fixtures mask (see :setFilterData).

The existence of a contact in the list does not mean that the
two fixtures of the contact are actually touching - it only means
their AABBs are touching. You can use isTouching() to
check if they are physically touching.

Contact
Bodies have their own
contact list that you can
specifically access.

This list can change in
the middle of a
world:update(), so if
all collisions are not
handled, some may be
ignored.

Body

Fixture

Category
Is like saying, “I am a …”
For example;
I am a cat and I will collide with cats and mice.
I am a mouse and I will collide with cats, but not other mice.

The category is for defining what you are, (mouse/cat)

The default behaviour is:
I am a thing and I will collide with every other thing., since
all fixtures by default have the same category/mask.

Mask
Mask is like saying, “I will collide with a …”, (see Category)
The Category and Mask work together, both conditions
must be satisfied such that both fixtures are allowed to
collide.

The mask is for defining what you will collide with.

Group Index
The group index overrides the Category and Mask. It can be
used to group together fixtures that should either collide or
never collide (think friendly fire in games for bullets).

See: http://www.iforce2d.net/b2dtut/collision-filtering

Figure 12 Box2D explained

Figure 17 Before struct con-
tact

Figure 18 Bodies cloned and
joined together

This can then be scaled into larger, more complex shapes, shown
in Figure 21.

Figure 19 Figure 20 Figure 21

Figure 22 Process of moving multiple shapes into one body

After a considerable amount of time, the algorithm for connecting
shapes was perfected, however, this did not also deal with dis-
connecting shape - after consideration I decided that this direction
would not be in the best interest of lssx because of the sheer time
taken to perform a relatively small section of the game. lssx would
be simplified to single fixture bodies only.

Destroyed

Figure 23 Flood fill with con-
nected shapes

Figure 24 Process of flood
filling to see which shapes are
still connected

After all this time I decided that this path was going to too large
in scope and would create significant blockades to progress further
down the line with respect to AI. So far I’d only managed to con-
nect other components together, later on I’d have to write another
algorithm to detach shapes when damaged.

B. Procedurally generated content
Procedural generation is a method of creating data algorithmically
as opposed to manually. In computer graphics, it is used to auto-
matically create large amounts of content in a game.

In order to fill a world with interesting an unique content (not
created by hand), we can make use of procedural generation and
pass some random integers to a function and generate some output,
the simplest example of this is the background, wherein several
hundred small circles ranging in diameters are scattered about the
map to give the impression of stars.

10 ttxi

lssx, LÖVE Space Shooter X

Listing 9 Old PG background code

Background = {}

Background.load = () ->
-- Create a static container for positions, this means

they're only randomized once.↪→

export pos = {}
sw, sh = love.graphics.getWidth(),

love.graphics.getHeight()↪→

-- Insert 200 instances
for i=1, 200 do

table.insert(pos, {x: math.random(sw), y:
math.random(sh), r: math.random(5)})↪→

Background.draw = () ->
love.graphics.setColor(60, 60, 60)
for i=1, #pos do

love.graphics.circle("line", pos[i].x, pos[i].y,
pos[i].r)↪→

return Background

B.1 Asteroids

This process of using math.random() to generate unique content
is repeated for asteroids, generating random vertices’s of shape.
Using procedural generation allows one to create a lot of content
quickly. PG also makes the game look like it has more content than
it actually does.

Figure 25 Procedurally generated asteroids

Asteroids are destructible, when they take enough damage they
crumble into smaller pieces that are ejected at some random velocity
from the local center. The size of the parent asteroid dictates the
size of the child asteroids in a realistic manner.

B.2 Particles

Particles are used to great effect in almost all games, the best
particles are those that aren’t noticed by the player yet still add to
the games’ atmosphere.

lssx has a simple particle manager that procedurally generates
and manages particles in the world, describing how long each
particle should live for and how to should behave in the world. Due
the the nature of particles, a large quantity are required, this means
that they must be programmed as efficiently as possible in order to
reduce memory usage and frame-rate spikes in the game.

The particles in lssx do not have a collision response with the
world objects because simulating over one thousand collisions real-
istically would place a large amount of strain in the CPU, calculating
positions, normals and forces that would need to be applied.

To this end, particles in lssx have a simple; x, y, dx, dy, wherein
the particle will move to dx,dy position from x, y over a period of
time. This involves the usage of linear interpolation, also known as
tweening.

C. Linear Interpolation and tweening
In order to move an object from one place to another over a period of
time without instantly teleporting the object to the desired place uses
a process called Linear Interpolation (lerping), commonly referred
to as tweening.

Tweening is simply the process of manipulating an objects prop-
erties over time by a given function. For example, if a car has a
constant acceleration, we can use a set of equations to calculate
how long it would take such a car to move a specific distance, the
same rule apply for inbetweening, whether if be changing and ob-
jects x,y position, health or even the amount of enemies spawned
over time.

Luckily, the LOVE2D community have created a whole host of
tweening libraries that can be used with a simple API. The one most
commonly used is flux14, created by rxi. flux is described as a fast,
lightweight tweening library for Lua.

Any number of numerical values in a table can be tweened si-
multaneously. Tweens are started by using the flux.to() function.
This function requires 3 arguments:

• obj The object which contains the variables to tween
• time The amount of time the tween should take to complete
• vars A table where the keys correspond to the keys in obj

which should be tweened, and their values correspond to the
destination.

Listing 10 flux.lua example

-- Moves the ball object to the position 200, 300 over 4
seconds↪→

flux.to(ball, 4, { x: 200, y: 300 })

The rate at which a property is changed can be altered by using
a different easing function. The most common easing function is
linear, which simply adds a constant amount per frame. How-
ever there are 28 different easing functions in flux ranging from
elastic-in-out to expo-in-out

14 rxi. (2017). Flux, [Online]. Available: https://github.com/rxi/flux (visited on 12/06/2017).

11

https://github.com/rxi/flux

Figure 26 All the different kinds of easing functions

Figure 26 shows all the different easing functions characteristics,
with time being on the y-axis, and the value being modified on the
x-axis.

Figure 27 Particle trails on a player ship

flux was used on the particles in 27 to tween the particles velocity
and opacity to zero, to give the impression of the particles fading
out.

D. Fuel, Health, Ammo, Slo-mo and Oxygen
Adding resources to lssx added another layer of difficulty to the
game. The player must manage all resources to maintain optimal
ship performance and thus have a better chance at survival.

• Fuel The player has a limited amount of fuel which limits how
far they may travel, moving faster consumes more fuel, when
all fuel is depleted the player will move incredibly slowly, being
less agile they are more vulnerable to attack

• Health When the player is hit by a enemy projectile, health will
be decreased, when health reaches zero the player dies and
re-spawns.

• Ammo When firing a weapon, the player loses a set amount of
ammo, when ammo reaches zero, the player can no long fire.

• Slo-mo Slows down the game to give the player increased
reaction times when in tricky situations. When exhausted it
takes 5 seconds to regenerate and so should be used scarcely.

• Oxygen Oxygen is used up when performing actions, shooting
/ using boost / interacting with objects, when oxygen reaches
zero the screen will start to distort and the player will lose a
constant amount of health over time until oxygen levels are
restored.

E. Pickups
Introducing such factors on the player would be unfair if there was
not a system that could increase / restore these values. Thus it was
necessary to introduce pickups that the player could collide.

Pickups in the world act as normal collision objects, they cannot
however, be picked up by an enemy ship. When the player interacts
with a pickup, the pickup its self is set to become a sensor (thus no
collision response), and the player receives a random amount of a
resource.

Figure 28 shows a first iteration of an ammo pickup.

Figure 28 Ammo pickups at initial development

Later in development pickups were changed again such that
their colour related to the value of the resource that it restored. This
makes it easier for the player to recognize pickups in the thick of
battle.

Figure 29 Polished pickups

• Red, restores Ammo

12 ttxi

lssx, LÖVE Space Shooter X

• Yellow, restores Fuel
• Blue, restores Oxygen
• Green, restores HP

F. Players and Ships
The Player is the most important aspect of any game and must be
enjoyable for the player to perform actions with it. A large portion of
time was dedicated to tweaking player movement, speed, fire rate
other misc. parameters.

Figure 30 Player movement explanation

The player’s ship is moved by applying forces to the rear end
of the ship. The angle of the ship controls the direction vector of
motion. The algorithm that moves the ship applies the forces to the
ship in a natural, space-like manner.

Figure 31 The player

F.1 Player and Game controls

• F: Shoot
• W: Boost
• Left MB: Slow motion
• Right MB: Stop movement
• P: Pause game
• Escape: Quit game

G. Creating a Box2D wrapper
Mid-way through programming I realized my current way of dealing
with collision, contacts and object identification was not going to fit
the scale of the project, it was slow, un-scalable and required a lot
of repeated code throughout classes.

To solve this issue would require a complete overhaul of the
current Object Orientation tree, I took a detour from developing the
game and into developing a Box2D wrapper which would solve all
my problems. In my current code I was simply looking through a

table for a match with the collision fixture from the beginContact
function. This solution, though working, is terribly inefficient, running
in O(n) time. My aims were simple, identify the other object within
O(1) time, this can solved with the use of hash tables.

The result of this detour was zephyr.15

G.1 Hash tables

Hash table

Unique Hash (key)

Unique Hash (key)

Unique Hash (key)

Unique Hash (key)

Self constructor
self.hash = hashFunction(os.clock())
hashTable[self.hash] = self

Hash
function

Self constructor
self.hash = hashFunction(os.clock())
hashTable[self.hash] = self

Self constructor
self.hash = hashFunction(os.clock())
hashTable[self.hash] = self

O
bj

ec
ts

Physics.beginContact = (a, b, coll) ->
 lssx.objects[a\getUserData().hash]\beginContact(b)
 lssx.objects[b\getUserData().hash]\beginContact(a)

Compared to...

-- Check which fixture is actually ourself
if a\getBody() == @ship.body
 export other = b
elseif b\getBody() == @ship.body
 export other = a

-- Look through all objects until we find the other objects
key
for k, object in pairs(lssx.objects) do
 -- Deal with top-level objects
 if object.body != nil
 if object.body == other\getBody()

The hashtable method has the advantage in that we already know what objects
beginContact callback we need to call, and we already know the other fixture that were
collidiing with, b, thus we can just as easily get the other fixutures table key since the
fixture has a reference to it in its own UserData.

@body = love.physics.newBody(world, @x, @y, @type)

-- Leave a reference to the table key (for collision data)

@body\setUserData({hash = @hash})

(@ = self)

Figure 32 A simple hash table example

A hash table is like a normal table, but instead of the object keys
being numerically ordered, the table keys have hashes.

When an object is created, it is created at a different time than
all the other objects since computers operate synchronously, if only
a microsecond time difference between them. This guarantees a
different key such that no values will be over-written when inserted
into the table.

This number is now run through a hash function, the hash func-
tion transforms this piece of data into something that can be man-
aged later on, in this case the hash function transforms our number
into a UUID, Universally unique identifier.

A UUID is a 128-bit number used to identify information in com-
puter systems. While the probability that a UUID will be duplicated
is not zero, it is close enough to zero to be negligible.

√
2× 2122 × ln

1
1− p

(1)

Thus, for there to be a one in a billion chance of duplication, 103
trillion version 4 UUIDs must be generated.

Listing 11 UUID generation function

export UUID = () ->
fn = (x) ->

r = math.random(16) - 1
r = (x == "x") and (r + 1) or (r % 4) + 9
return ("0123456789abcdef")\sub(r, r)

return
(("xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx")\gsub("[xy]",
fn))

↪→

↪→

This value is then set as a key in the lssx.objects table, acting
as a pointer to the object.

Compared with the previously old code which relied on checking
which fixture was ourself, and then looping through all objects to
find the other fixtures key.

15 twentytwoo. (2017). Zephyr, [Online]. Available: https://github.com/twentytwoo/zephyr
(visited on 12/05/2017).

13

https://github.com/twentytwoo/zephyr

Listing 12 Elegant beginContact function

Physics.beginContact = (a, b, coll) ->
print("contact")
-- pass a->b and b->a
lssx.objects[a\getUserData().hash]\beginContact(b)
lssx.objects[b\getUserData().hash]\beginContact(a)

The hash table method has the advantage in that we already
know what objects beginContact callback we need to call, and we
already know the other fixture that were colliding with, b, thus we
can just as easily get the other fixtures table key since the fixture
has a reference to it in its own UserData.

The base class for all objects in the game is the Object class,
this class defines defines a creation time, creates a custom unique
hash and provides a simple function to remove the object from the
table.

All objects that have some kind of interaction with physics are
children of Object, given the class PhysicsObject, in this class
objects are given a body, and a function that updates their position,
as well as another function that not only does the same as the
parent class Object, inserts the command in the aforementioned
Physics buffer to remove self from the lssx.objects table and
Box2D world.

Listing 13 Base object class

class Object
new: () =>

@creationTime = love.timer.getTime() - lssx.INIT_TIME
@hash = tostring((@creationTime))\gsub('%.', '')
-- Insert ourself into the lssx.objects table at the

hash key↪→

lssx.objects[@hash] = self

remove: () =>
lssx.objects[@hash] = nil

class PhysicsObject extends Object
new: (world, @x, @y, bodyType) =>

super()
@body = love.physics.newBody(world, @x, @y, bodyType)
-- Leave a reference to the table key (for collision

data)↪→

@body\setUserData({hash: @hash})

remove: () =>
-- Remove self from global table, Box2D destroy self
Physics.addToBuffer ->

super\remove()
@body\destroy()

Two objects Test and Test2 will be created for the purpose of
explanation, their behaviour will be shown when they collide. They
both have the same collision callback,

Listing 14 Object beginContact example

beginContact: (other) =>
other_object =

lssx.objects[other\getBody()\getUserData().hash]↪→

print "I collided with object " ..
other_object.__class.__name .. " with key " ..
other\getBody()\getUserData().hash

↪→

↪→

Figure 33 Before collision Figure 34 After collision

When the smaller object collides with the larger object, the global
beginContact function is called, this in turn calls both of the objects
beginContact function which prints out what they collided with and
it’s key in the table.

Listing 15 Polygon contacts

love.load = () ->
Physics.load()
-- Create two new PolygonPhysicsShapes (a custom class),

and insert them into our Box2D world and
lssx.objects object table

↪→

↪→

Test = PolygonPhysicsShape({10, 20, 30, 40, 40, 80}, 0.1,
lssx.world, 210, 300, "dynamic")↪→

Test.body\applyForce(10000,0)
Test2 = PolygonPhysicsShape({10, 20, 30, 40, 40, 40, 200,

-100}, 0.1, lssx.world, 300, 300, "dynamic")↪→

love.update = (dt) ->
Physics.update(dt)
for k, object in pairs(lssx.objects) do

object\update(dt)

love.draw = () ->
for k, object in pairs(lssx.objects) do

object\draw()

export beginContact = (a, b, coll) ->
--Simply retrieve our hash, call the object that matches

the hash's beginContact function and pass the other
contacts fixture

↪→

↪→

lssx.objects[a\getBody()\getUserData().hash]
\beginContact(b)↪→

lssx.objects[b\getBody()\getUserData().hash]
\beginContact(a)↪→

G.2 Custom Hashes

Sometimes we may not always want to use a custom hash, for
instance we may want to set a hash of "Player" such that it can
be easily accessed via lssx.objects["Player"], in this case an
arguement must be added to the Object class, shown:

Listing 16 Custom hash code

class Object
new: (customHash) =>

@creationTime = love.timer.getTime() - lssx.INIT_TIME
if customHash != nil then

@hash = tostring(customHash)
else

@hash = tostring((@creationTime))\gsub('%.', '')

14 ttxi

lssx, LÖVE Space Shooter X

And then in the PhysicsObject child constructor, we call
super(...) which initializes the custom the hash first, and then
the PhysicsObject hash is set to the bodies UserData.

A typical collision between two objects, in this case an Asteroid
and Player prints the following to stdout.

4.730s [important] beginContact() triggered
4.756s [collision] -> Asteroid, k:

3c1aa946-901f-48b2-a1dd-3fd3fb984821↪→

4.761s [collision] -> Player, k: Player

The log shows the asteroid object’s hash is
3c1aa946-901f-48b2-a1dd-3fd3fb984821, a UUID and
the player’s hash is Player, a custom hash. This means that all
the objects attributes and methods can easily be accessed via
lssx.objects[3c1aa946-901f-48b2-a1dd-3fd3fb984821 /
Player] since the hash is a pointer to the object’s key in the global
object table.

This new method of object identification will allow for scalable
development of the project.

H. Cameras
H.1 hump.camera

Helper Utilities for a Multitude of Problems is a set of lightweight yet
mighty useful tools to build your game. It will help to get you over
the hump.

A component of HUMP is the camera module. A camera can
“look” at a position. It can zoom in and out and it can rotate its’
view. In the background, this is done by actually moving, scaling
and rotating everything in the game world.16

This is achieved by creating a HUMP camera instance and
adding everything one would to be moved by the camera inside
its draw function. For example:

function love.draw()
camera:draw(draw_world()
draw_hud()

end

The contents of draw_world is modified by the camera and can
be translated/scaled/rotated to the programmers will, however, the
HUD element, draw_HUD, is not modified and will stay in the same
position in the window. This is done exactly the same as in lssx,
albeit more complex.

As mentioned in the research section, camera’s can simulate
parallax between objects giving the illusion of depth. In order to
do this more than one camera instance is required, one for each
"layer". HUD parallax is described in ??.

H.2 STALKER-X

STALKER-X is another camera library for LÖVE, created by SSY-
GEN (developer of BYTEPATH). It provides basic functionalities
that a camera should have and is inspired by hump.camera and
FlxCamera.17

STALKER-X is an improvement over the HUMP camera in that it
is programmed to have "deadzones". Deadzones define different
areas in which the camera will or will not follow a target. STALKER-X
also has the ability to set camera lead on a target (how far it will
follow ahead) and lerp (Linear-intERPolation) values which modified
how "sticky" a camera is relative to a target.

16 vrld. (2017). Hump camera, [Online]. Available: http://hump.readthedocs.io/en/latest/
camera.html (visited on 12/05/2017).

17 STALKER-X. (2017). Ssygen (adn), [Online]. Available: https://github.com/SSYGEN/
STALKER-X (visited on 12/05/2017).

STALKER-X also has several helper functions, from shake to
flash and fade.

• shake: Shakes the camera by some intensity and frequency
over time t.

• flash: Quickly flash the camera contents black, useful for
effects when the player gets attacked

• fade: Change the camera contents opacity to 0 over time t,
useful for scene transitions.

Since STALKER-X was inspired by HUMP camera, their useage
is very similar, the addition of the aforementioned functions is the
reason why STALKER-X was chosen to be the main camera system
in lssx.

I. Artificial Intelligence

To keep an arcade-like style of game-play the AI was intentionally
simplistic. AI is the most CPU-heavy aspect of any game, keeping
low levels of intelligence allows the game to support many more
entities per world, allowing for higher frame-rates and overall player
experience.

I.1 Finite State Machine

• Chase If the player is within a set sphere, follow the player
• Attack If the player is within our FOV, fire our weaponry
• Hide Attempt to save ourselves by running away
• Idle If player is outside our max FOV, do nothing

1start

2 3

b
ε

a
a, b

a

Figure 35 Finite State Machine example

In Figure 35, 1, 2 and 3 are behaviours, e.g. run, hide, jump. a, b,
and ε are transitions, a change in environment / conditions causes
a transition to occur, thus changing the entity behaviour.

Conditions can be continually checked via a typical case
switch, this is called polling.

I.2 Path finding

Path finding should be rather simple in nature to allow for high on-
screen enemy counts (since basic path finding reduces CPU-time
per entity). Considering the fact that each enemy will exist for a short
duration in time, due to player actions against them, sophisticated
behaviors are not required. The AI should be hyper-aggressive,
placing pressure on the player to react faster to incoming waves of
entities. The aim is to create an AI which is fun to play against, not
technically complex.

The path finding for the AI is similar to the way in which the Player
ship follows the mouse location, instead of the mouse location, the
AI follow the Player location. A set of variables are introduced into
the AI movement to make them seem more intelligent.

15

http://hump.readthedocs.io/en/latest/camera.html
http://hump.readthedocs.io/en/latest/camera.html
https://github.com/SSYGEN/STALKER-X
https://github.com/SSYGEN/STALKER-X

J. Director and Game loop
The director controls the game loop by spawning fresh waves of
enemies, increasing scores, difficulties and also manages the game
over / game restart screens.

K. UI
UI is specifically simple to keep player distraction down to an ab-
solute minimum. The UI should only display important information
about the player’s progress and current state.

The UI consists of several elements:

• HUD, displays player resources
• LineExplosion, Procedurally generated explosion effect
• FlashSq, another PG explosion effect, less subtle
• Cross, Miscellaneous UI for HUD and background

K.1 LineExplosion

A LineExplosion is a minimal explosion effect which are similar to the
one’s one in DATA WING, the LineExplosion is useful for showing
how procedural generation actually works.

class LineExplosion extends Object
new: (@x, @y, @count=math.random(4,8), ...) =>

super(...)
@c = { -- ox, offsetx, ex, endx

ox: 2, oy: 2
ex: 10, ey: 10
o: 255

}
t = math.random(5)/10+0.1
mo, me = math.random(20)+5, math.random(20)+10
flux.to(@c, t, {ox: mo, oy: mo, ex: me, ey:

me})\ease("quadout")\oncomplete(-> super\remove())↪→

Timer.after(t/2, -> flux.to(@c, t/2, {o: 0}))

draw: () =>
love.graphics.setColor(255,255,255, @c.o)
for i=1, @count do

PushRotate(@x, @y, math.rad((360/@count)*i))
love.graphics.line(@x+@c.ox, @y+@c.ox, @x+@c.ex,

@y+@c.ey)↪→

love.graphics.pop()

Figure 36 Different types of LineExplosion’s

K.2 HUD

HUD or Heads Up Display shows the player information, specifically
related to their resources, score and number of kills.

Figure 37 Player HUD

The HUD is constructed out of four HUD bar’s, given the class
HUD.elements.bar.

The HUD also has a subtle overlay, similar to that present in
DATA WING, the overlay is present only for aesthetic purposes and
gives the impression of the player looking at a CRT computer display
(which is helped greatly via the use of Moonshine CRT & scanlines
shaders). The overlay is constructed from a series of lines and
Cross objects, which were specifically created for the HUD.

The HUD overlay features parallax, the effect whereby the po-
sition or direction of an object appears to differ when viewed from
different positions, e.g. through the viewfinder and the lens of a
camera. The parallax works by creating a new STALKER-X camera
instance and creating an offset from the screen center by adding the
player’s linear velocity (in the x, y position, which includes negative
numbers)

The camera then uses linear-interpolation to move to the new
X, Y position over time (time taken is calculated by a discrete lerp
value).

HUD.update = (dt) ->
x, y = HUD.player.ship.body\getLinearVelocity()
HUD.camera\follow(550+x/15, 300+y/15)
HUD.camera\update(dt)

This has the effect of the entire HUD shifting slightly away from
the player’s forward vector, this gives the impression of depth as the
movement between player and HUD is relativistic.

L. Projectiles
A projectile is composed of a body, fixture and shape. The very
nature of projectiles means they move at a typically faster velocity
than most other objects in the game, this can introduce certain
issues when using a fixed time step physics engine,

There are two methods to check for body collisions:

• at their location when the world is updated (default)
• using continuous collision detection (CCD):

The default method is efficient, but a body moving very quickly
may sometimes jump over another body without producing a colli-
sion. A body that is set as a bullet will use CCD. This is less efficient,
but is guaranteed not to jump when moving quickly.18

In Box2D, collisions are detected every tick at the point where
the object moves to. If the object moves into another object, then
the physics engine pushes it back to where the collision happened
initially, as shown in Figure 38.

The process of moving an object back to will never actually seen
as that is corrected during each tick, before the draw function is
called. However, if our projectile was moving so quickly that it simply
passed through the grey square, no collision would be detected, and

18 Rude. (2017). Body:setbullet.

16 ttxi

lssx, LÖVE Space Shooter X

the physics engine would not be able to correct the balls position.
This is known as tunneling.19

Figure 38 Without CCD Figure 39 With CCD

In order to apply CCD to objects,20

@body\setBullet(true)

Continuous Collision Detection (CCD) prevents cases of small,
fast-moving actors from traveling through thin walls. CCD impacts
performance. As such it should only be used on objects that need
it.

M. Components
M.1 Emitters

Emitters are simply projectile creators, they pass horizontal and
vertical components to the projectile.

An interesting bug that arose during development was that bullets
seemed to slow down then a ship was traveling at high speeds,
however, this was just effect of relativistic effects. On creation, a
set amount of force was applied to the projectile, the projectiles
were traveling at a constant velocity, but compared to the ship they
appeared slower. This however does not coincide with the laws of
conservation of momentum. A projectile should in-fact inherit the
velocity of the ship.

ρ = mv (2)

ρproj = m(v + vship) (3)

ρprojx = m(vcos(θ) + vshipcos(θ)) (4)

ρprojy = m(vsin(θ) + vshipsin(θ)) (5)

Emitter can emit any number of projectiles during an emission,
they can also control the spread of projectiles by passing a differ-
ent dy/dx, as opposed to straight ahead, this allows the emitter
component to simulate any kind of firearm.

In the effort to reduce complication, the emitter does not handle
a list of its emitted objects, it instead inserts objects into the global
object list, lssx.objects.

M.2 Shields

Shields are fixtures that attach to the Ship body in components, a
shield has a GroupIndex of either Friendly or Foe, a shield will only
have a collision response with an object of category Projectile.

Projectiles will have a different GroupIndex depending on if the
player or AI has fired it from their emitters, this prevents the shooter

19 Stencyl. (2017). Continuous collision detection (ccd), [Online]. Available: http://www.
stencyl.com/help/view/continuous-collision-detection/ (visited on 12/07/2017).

20 Rude, Body:setBullet .

from damaging their own shields as shields project outward from
their body.

A shield has a set HP, when this HP is reduced to zero, the shield
deactivates for a set amount of time depending on the size of its
health. i.e. a Shield will take longer to be restored if it has a large
HP than one with a small HP.

N. States
A gamestate encapsulates independent data an behaviour in a
single table. Different states can be used to separate different
sections of the game from each other, such that their data is private
and does not leak.

A typical game has the following states:

• Main Menu
• Game
• Pause
• Game Over

In lssx, this is simplified such that their are only three states:

• Splash
• Main Menu
• Game

N.1 Splash

The splash state is entered as soon as the game is entered. The
splash state uses the Splashy21 library, created by videah.

splashy is a simple and basic library for LÖVE, that allows
the easy implementation of splash screens to any project.

The Splash screen also sets the lssx.FIRST_TIME flag true,
which is used later in the game loop to decide if the instructions
should be shown again.

N.2 MainMenu

The MainMenu state is simply a scrolling text screen that gives time
for the game to load it’s assets.

N.3 Game

The game state is more of a "God" object, as in it combines a lot of
functions and states (pause, lost-focus, game-over) together - which
is generally considered bad practice but can be passed due to the
small scale of the game.

The game state contains a Director that manages the objects
and entities in game. The Director also manages the player score
and game over screen.

O. Documentation
O.1 lssx

lssx "God" table, contains many constants that are used throughout
the game.

require("lssx")

• lssx, table

– objects, Global object instance container, table
– categories, Box2D categories, table

21 videah. (2018). Splashy, [Online]. Available: https://github.com/videah/splashy (visited
on 03/07/2018).

17

http://www.stencyl.com/help/view/continuous-collision-detection/
http://www.stencyl.com/help/view/continuous-collision-detection/
https://github.com/videah/splashy

– groupIndices, Box2D group indices, table
– INIT_TIME, Game initialization time, number
– CAMERA_ZOOM, STALKER-X game camera zoom,
number

– WIDTH, Scaled window width, number
– HEIGHT, Scaled window height, number
– SCALE, Global game scale, number
– W_HEIGHT, Actual window height, number
– W_WIDTH, Actual window width, number
– PLAYER_DEAD, Player dead indicator, boolean
– FIRST_TIME, first time opened indicator, boolean
– PAUSE, Game paused indicator, boolean
– TITLEF, Title font object, font
– TEXTF, Text font object, font
– SCORE, Player score, number
– KILLS, Total player kills, number
– SPFX Special Effects, table

* CHROMASEP, Chromatic aberration strength,
number

* CHROMASEP_ANGLE, CA angle, number
– masks, Box2D masks, table

O.2 Object
Object(customHash)

• customHash: Define a custom hash for the object in
lssx.objects, string

O.3 PhysicsObject

Extends Object
PhysicsObject(world, x, y, bodyType, customHash)

• world: Box2D world
• x: x position of physics object, number
• y: y position of physics object, number
• bodyType: the type of body, string

– "static": Static bodies do not move.
– "dynamic": Dynamic bodies collide with all bodies.
– "kinematic": Kinematic bodies only collide with dy-

namic bodies.

O.4 PolygonPhysicsShape

Extends PhysicsShape
PolygonPhysicsShape(points, density, world, x, y,

bodyType, customHash)}↪→

• points: Table listing vertices’s (numbers), table
• density: Density of fixture, number

O.5 CirclePhysicsShape

Extends PhysicsShape
PolygonPhysicsShape(radius, density, world, x, y,

bodyType, customHash)↪→

• radius: radius of circle, number

O.6 ChainPhysicsShape

Extends PhysicsShape
ChainPhysicsShape(points, density, world, x, y, bodyType,

customHash)}↪→

• points: Table listing vertices’s (numbers), table

O.7 Ship

Extends PolygonPhysicsObject

Ship(world, x, y, bodyType, customHash)

Mostly generated procedurally.

O.8 Asteroid

Extends PolygonPhysicsObject

Asteroid(x, y, customHash)

• x: x position of Asteroid, number
• y: y position of Asteroid, number

O.9 Entity

Extends Object

Entity(hp, customHash)

• HP: Health points, number

O.10 Player

Extends Entity

Player(ship, hp, customHash)

• ship: Instance of class Ship, object

O.11 Enemy

Extends Entity

Player(ship, hp, customHash)

• ship: Instance of class Ship, object

O.12 Projectile

Extends PolygonPhysicsShape

Projectile(x, y, points, groupIndex, customHash)

• groupIndex: Box2D body group index (collision masking),
number

O.13 Bullet

Extends Projectile

Bullet(x, y, damage, customHash)

• damage: Damage to deal to entity upon collision, number

O.14 Pickup

Extends PolygonPhysicsShape

Pickup(x, y, customHash)

O.15 Shield

Extends CirclePhysicsShape

Shield(hp, x, y, groupIndex, customHash)

O.16 Cross
Cross(x, y)

18 ttxi

lssx, LÖVE Space Shooter X

O.17 FlashSq

Extends Object

FlashSq(x, y, intensity, customHash)

• intensity: Size / brightness of Flash square, number

O.18 LineExplosion

Extends Object

LineExplosion(x, y, count)

• count: Number of lines extruding from center, number

O.19 HUD.elements.bar
HUD.elements.bar(x, y, pointer, value, color, bgcolor)

• pointer: Reference to object being monitor, object
• value: Value of object to be displayed (e.g. hp, ammo), string
• color: Table containing rgb values for foreground bar colour

– [1]: Red, number (0-255)
– [2]: Green, number (0-255)
– [3]: Blue, number (0-255)

• bgcolor: Table containing rgb value for background bar colour

4. Play-testing and improvements

A. Q&A
Eight people play-tested lssx in its current state.

The following questions were asked:

• What do you like / dislike about lssx?
• What would you like to see added / removed or changed?
• Rate the game in its current state.

What do you like / dislike about lssx?

• I really enjoy the high learning curve, as well as the necessita-
tion of gathering different resources so that the player cannot
simply focus on one singular task. I couldn’t entirely tell, but it
seemed that there was only one ’tier’ of enemy, so if that were
the case, I would dislike that aspect of the game.

• you’re killing soviets and also the aesthetics. as for dislikes,
the rather jarring shooting sound.

• Shooting sfx is awful and is played way too much. The camera
tween seems like it would make me want to puke after a while.
I do like the shaders and the hex theme.

• It looks a lot like asteroid.
• It goes at a nice pace
• it looks like bytepath
• Screen shakes too much
• landed the aesthetic well, sound balance doesn’t seem right,

hard to make-out feedback/kills noise from gun noise

What would you like to see added / removed or changed?

• I would like to see different ’tiers’ of enemies added, along with
better rewards for more difficult ones. Maybe even a ’boss’
enemy after enough kills. It would also be interesting to see
the usually useless asteroids occasionally contain something
useful within them - perhaps some gun upgrade from a wrecked
ship. Finally - and this is certainly the game’s most pressing
issue

• the shooting sound.

• maybe make it a bit slower?
• Smooth out the zooming. Maybe more colors or even some

blooming on certain colors?
• multiplayer
• Halve the screenshake

B. Q&A results

Players rated the game in its current state a 8.5/10.

Figure 40 lssx itch.io change-log

C. Improvements

• Changed shooting sound
• Reduced camera shake
• Increased difficulty via modifications to Director spawning code
• Created separate removal buffer for Box2D destroy calls
• Added several new SFX
• Added pause screen
• Fixed memory leaks from new states
• Fixed crashes from zephyr attempting to access nil objects
• Fixed bullet clipping shield
• Added bloom shader
• Added kill streak indicator
• Added time indicator to HUD
• Fixed timers being affected by slow motion
• Added LÖVE splash
• Modified Asteroid destruction algorithm
• Modified low HP enemy AI behaviour to spin out of control
• Changed background music

5. Publishing

A. itch.io

itch.io is a website for users to host, sell and download indie video
games. Released in March 2013 by Leaf Corcoran, the service
hosts nearly 100,000 games and items as of February 2018.22

With the modifications added to lssx it was finally ready for the
game to be released. itch.io provides a simple website building
service that allows users to advertise their games.

Figure 41 lssx itch.io page

22 Leafo. (2018). Itch.io, [Online]. Available: https://en.wikipedia.org/wiki/Itch.io (visited
on 03/27/2018).

19

https://en.wikipedia.org/wiki/Itch.io

Figure 42 lssx itch.io change-log

lssx has been packaged for Windows (32 bit) and Linux.
lssx can be found at: https://ttxi.itch.io/lssx

6. Project overview

A. Final thoughts
Overall pleased with outcome, achieved my goal of making a short
enjoyable game with a fair amount of re-playability. Gained a strong
understanding of Box2D and appreciation for simple, elegant solu-
tions to problems.

Things learned:

• Physics is hard
• Desire to work on a project / code quality drops off exponentially

over time
• 90% effort required for the last 10% of work

After EPQ I’d like to further develop zephyr make it easier for
people to develop their own games.

Links related to lssx

• lssx beta: https://github.com/twentytwoo/zephyr
• lssx: https://github.com/twentytwoo/lssx
• blog post about lssx: https://ttxi.gq/posts/

lssx-and-lessons-learned
• lssx LÖVE thread: https://love2d.org/forums/viewtopic.php?

f=14&t=85003
• lssx presentation: https://ftp.ttxi.gq/5cTO0kDM0Y.pdf

7. Screenshots

Figure 43 Screenshot 1

Figure 44 Screenshot 2

Figure 45 Screenshot 3

8. Commit log

20 ttxi

https://ttxi.itch.io/lssx
https://github.com/twentytwoo/zephyr
https://github.com/twentytwoo/lssx
https://ttxi.gq/posts/lssx-and-lessons-learned
https://ttxi.gq/posts/lssx-and-lessons-learned
https://love2d.org/forums/viewtopic.php?f=14&t=85003
https://love2d.org/forums/viewtopic.php?f=14&t=85003
https://ftp.ttxi.gq/5cTO0kDM0Y.pdf

lssx, LÖVE Space Shooter X

Date Commit message URL

Nov 4 18:11:42 2017 Create README.md 8f214a13b128848678d7b1e6f20144ceea7f741b

Nov 5 15:36:31 2017 Box2D is overkill d92d0bacb3852023bd00334a2698054cd10bed4b

Nov 5 19:32:30 2017 Basic controls 1857b9ddd0bbfdb101bb2d9251ea5ed1def53178

Nov 5 21:35:25 2017 Basic guns projectiles e7fd04db3cdbac51dbfcf41f0522be91fe1f8db0

Nov 6 12:26:37 2017 Bullet math and camera complete 652f32e268e735c06fbf7aefaf2e8bd1637b3d6c

Nov 8 19:59:22 2017 Fleshing out understanding of love.physics removed wind-
field because it s too limiting one body fixture and shape
will place too much strain on CPU later also does not allow
multiple fixtures per body

a00f7b658f972aeaa7c30127242b899dedcccdb8

Nov 9 14:57:47 2017 Rewrote command module physics structs bdcef82a995b57aee20ff9565f18dfcda9b3d72d

Nov 9 14:59:32 2017 Removed STI dca3ce860580ef2d373b3e29480411b16bddae4a

Nov 9 23:32:15 2017 Using a buffer for world changing via box2d callbacks 17db76d214b689ac3b37ee38886b79ed22fe2de5

Nov 9 23:33:44 2017 Fixed merge 9fca53a4030621fc9bda086ed749a66a10a13fab

Nov 10 10:15:16 2017 Update README.md 69d8cb1233b7832eb91fecdd902c65c49a4f7b07

Nov 10 11:36:48 2017 Progression in shape clicking ef3ae5f3312ec913382b88df94bbdb19129c3c20

Nov 10 11:38:36 2017 Progression in shape clicking dec4c6b92be6243f4f1c49e7100a0b8a6ee2d9d7

Nov 10 11:38:53 2017 Merge branch master of https github.com twentytwoo lssx 06028e2d14565a791f817083075f8e1513630314

Nov 10 11:40:41 2017 Progression in shape clicking 733de1c664feefc4236306350fecbdf23e9a60f4

Nov 10 11:41:35 2017 Progression in shape clicking 618b897b4e1287c0a86b1ccbe8bb2d8ca8bbb9c9

Nov 10 13:15:32 2017 Started on recursive shape connection algorithm 42ce5e7622a38fdbac1404892ede65d5cba04e76

Nov 10 13:16:19 2017 Started on recursive shape connection algorithm 201e0a429a07dbd4d706f39b8e554e5898f9d21d

Nov 10 23:24:21 2017 Problems with shape connections 3fcedc6cc6351a12f272c5cfff1f42f8852be827

Nov 11 18:22:22 2017 Working on adding rotation to vertices 15b2dd27d467a83bde191b64c90b80f909d536d6

Nov 11 20:34:23 2017 Fixture adding algorithm works kind of needs touching up
to make modular

e42319851d38eba8bd7198e19a06ecde79ec730a

Nov 11 22:21:43 2017 Cleaned up shape connect algo d9cd9672d5124f12ed350bbba21b54aa456b9d9a

Nov 12 13:01:10 2017 Connection algo works doesn t detect for invalid connec-
tions other shape overlaps toCM and resolves it to rotate
them

b7cf5e7f9e56fd3f24eedfaee66d4cb92fbdee43

Nov 12 14:08:37 2017 Scrapping one body multiple fixtures because of difficulty
to implements bugs the fact that turret like weapons would
be impossible to create later on because fixtures inside
one body cannot move independently to on another

bebacbafeecd68c9ee87693bf2b94cae7f2a85f7

Nov 12 15:12:37 2017 SINGLE BODY MUTLI FIXTURE PHYSICS 17465f46a8c232ef20153e5bf9900d56f8842f56

Nov 13 00:10:46 2017 Ship control code mostly done 8282f59fde0bd43e7cfebf109d846d59fd5c9a59

Nov 14 12:30:49 2017 Camera work done b32f08f37a8768f6700fa62979dcff1eaff83446

Nov 14 18:36:16 2017 Added a console interface setup LoverNet feaf1c9f72dec21e3ab2182607b0c1db16bc49b2

Nov 14 18:49:24 2017 Added empty files for most of game files 97d5aef4e743eac2a700167bb94ace80dd41aadd

Nov 15 14:43:23 2017 Server Client set up af7c43eb3cb3448df0ca8dbadc9d0da990cb9675

Nov 16 01:02:01 2017 Emitter bullet and projectile classes working 2a53213e8bf3fd52d30db68a0863d840b9a12ad5

Nov 16 18:01:14 2017 Proceedural asteroids camera s emitters ff8a678c4fe7acfa4a2023334a884747eec976b6

Nov 17 00:37:27 2017 Emitter emitting projectiles at self position correctly now a5a9cb8e61b02a0b802cdd929cb6772189620bfd

21

Date Commit message URL

Nov 17 23:45:18 2017 Replaced HUMP camera with STALKER X added Player
class

99411df9801d342f76146c959ca1b8788f335c26

Nov 17 23:45:50 2017 Removed old file 1df36033493bfdafeeecdfc7b56e0ef305843eea

Nov 18 00:41:24 2017 Started on Sheilds and Missiles b75fe6a15dd5e9c853df99bb7f1ec084510d5164

Nov 18 11:51:58 2017 Fixed Debugger 616df329dd491409cd0f8f4f6ec3a9e151dc419d

Nov 18 13:34:50 2017 Modularized ship components shields emitters etc e7fd58f9c3d96e20a737e78bff818f41263a46e6

Nov 18 15:17:11 2017 Added ammo limit for players emitters added moonshine
shader effects

bb89c55c96d6f13fb4e30881cba590715e35968d

Nov 18 19:33:31 2017 Started on ammo o2 fuel pickups added shield disabling
tweening Player HUD

3d17f229bd89cb62d407e75828b80967e82d78d6

Nov 19 00:41:20 2017 Oxygen Fuel Ammo NOS integrated each affects another
Player class updated to control ship Ship can now be
modularized for AI

3b6e2baefbe95710468391777e95d9cface9ee9b

Nov 19 03:21:11 2017 Started on primitive AI 55b78fa3c15411f4428b4b8937ebfdcb5bc6bcbb

Nov 19 15:06:13 2017 Pushing last nights changes taking the day off e43e00391842725e87ac98687f456bb769344f84

Nov 21 12:41:41 2017 Collision callbacks sort of sorted out with player Ammo
example Player can now pickup ammo and it add s to their
ammo count

4289b2ed8329bcef64231817d2adde7672c8c825

Nov 22 01:57:29 2017 Added ship direction reticle 95fce4249422f889fc458fba887ca5dbce33d0c2

Nov 24 12:40:01 2017 Added player collision detection awful solution for bullets
because of emitter self projectile table needs rethinking

7e700751ec9a1777e36735deade089b313d0deee

Nov 25 17:06:19 2017 Particles b13c05911e9fbd531e9175e8cbdc2e3f19068332

Nov 26 20:36:23 2017 trails and some more AI work ec6ec90069931964fecc42a1eaffa868897c473e

Dec 3 18:07:08 2017 modified components AI.moon 15cc2742d8f62b9849a7c74bdd607c7bf81d2eee

Nov 27 01:50:57 2017 Create README.md 24cc646f26d911ef747f68d245a9c5dab5e53a77

Nov 28 12:40:46 2017 Create main.moon b1bc6a218a8e4cf889628ca5895c46c6065a4eb5

Nov 30 13:10:40 2017 Update main.moon 7389001adabdaee8e1cf99bd5a2973aa385128a3

Nov 30 13:25:17 2017 Update main.moon 67f218e5d6cb9894c34282d8136c717c45e53f60

Nov 30 13:29:24 2017 Update main.moon 51b341e7546b9a5de9655a5b6eafa1cc9a06fa39

Dec 3 01:52:56 2017 Restructed collision callbacks to make use of hashtables
other fixture table key now found in O 1 time

ec829bd9fca4a7c10ec1a23a31201e52b0c590f4

Dec 3 14:22:42 2017 Reorganized file structure b03f751e7cd0f078f218c5c97470498b5024ecd4

Dec 3 23:48:38 2017 Reintegrated players entities ships circleshapes as well
as libraries

a5634da8c5ab188840bf323c31e3aa2427aa5f4f

Dec 7 19:49:20 2017 Readded player control background and particles to new
engine

c20881e595e610930192130290e9e4607b9d606b

Dec 7 19:50:59 2017 Correct ignoring 46b23de561c0bcbcb6ccd9b01261abadb3aae98e

Dec 8 19:18:32 2017 Readded emitters and bullets diamond problem with entity
ship polygonShape and projectile bullets physicsShape

66ef83ddcc9b4597d4db7e41238a1a8c1fcca74b

Dec 8 22:45:08 2017 Resolving diamond issue with projectiles going to use
polygons only for projectiles creating a sort of circle via
many vertices

194395c905a76a62766403841f9744aad9a9d092

Dec 9 15:31:22 2017 Added documentation a2ea4c7b8795186f1dd5415ceeed9746838a9e56

Dec 9 15:32:46 2017 Fix docs formatting 08da4e708c29e13e100e1073620019d5f1d52dd5

22 ttxi

lssx, LÖVE Space Shooter X

Date Commit message URL

Dec 9 15:33:34 2017 Fix docs formatting 8f590509f729d28eef64f9c8792e7db8235e313e

Dec 19 12:40:00 2017 Updated Emitters to working state started working on
group indexes restructed Projectiles and Bullets added
octogonal bullet shape projectile lifetimes working

c54a64f330f1587b5b53723f61c337d028bd711d

Dec 20 14:31:36 2017 Group indexes between player bullet working started on
readding shield to zephyr engine

1b45389038dbe8a86bdce7d8df426a256e6058dc

Jan 30 12:20:39 2018 Create EntityManager.moon d9a09db3542581a7f1c81272abc428c9f8a81a7f

Jan 30 12:20:53 2018 Update main.moon 65e6fa55d805c0aa6a8f974662b2694ace4db4b6

Jan 30 12:22:36 2018 Update main.moon 27c964ab781660752cbd9d69bee932013c3b4a3d

Jan 31 12:57:49 2018 Update README.md 61024ae098d457d7b962e6703218bbe5f856cfcc

Jan 31 12:58:19 2018 Update README.md 8bc6e8e3c33c13b7c6b560b81a060657f74965fc

Jan 31 12:58:52 2018 Update README.md dcf56487920c084730095290524e2bfcfd2f1562

Feb 12 14:24:35 2018 semi infinite grid SPFX readded camera tweaking started
on enemies again

b26c56138b87043441692a4e4736621ed9e99385

Feb 12 14:42:32 2018 fixed merge issue added gamestates 7e1c041733efb192489e354537f7325ec6fd7fe1

Feb 12 15:20:21 2018 AI pathfinding working! b67f41695792c41b5879bc898e521f844ecaf18d

Feb 12 16:56:12 2018 Added splash screen 0a435b2254de655d01f1ee600a902ccbbd39c19f

Feb 12 18:17:25 2018 finite state machine general ai stuff background stuff 084af3a5a39a48462a975156a248fd80d7790c11

Feb 13 18:48:59 2018 fleshed out splash main menu screen 1a235a2319c3c41674c8c9ad6e7461035b3703ea

Feb 13 19:51:48 2018 Fix enemy physics removal bug 28e23f62e335fe7c7753fa1e2d6da9c0ba3b829f

Feb 13 22:53:51 2018 added sound effects modified hiding ai state 485e0b2f586abeaf70c7f3871a0983df8f901646

Feb 13 23:55:11 2018 Reworked logging 2d81013c30f02834d5e568fa58079c557cc9f541

Feb 14 00:13:44 2018 bug identified either race condition or repeats in the buffer e8c4accb14a3f0941878600b9fc790b5e5baf20d

Feb 14 01:39:43 2018 seemed to have fixed the bug wherein multiple body de-
stroy calls were made throwing an error if an bullet collided
with two objects in the same world tick

7ad004ec9e54d4933d34f20d59f8de9873e5845a

Feb 14 02:02:22 2018 AI tweaks 7df2d55d3c084d8dd6eb38e1cb5bdedb41fbcaff

Feb 14 20:04:23 2018 Added HUD w parallax added crosses FlashSq effects
updated ai behaviour

eb9d076c42155fea73acb6da2c42dad81f7393ca

Feb 15 00:42:48 2018 Added Director to control game loop and manage game
over screen added UI for player hp ammo oxygen other
things

36ac8e49fc7f2c96a8ab226699da62069b8269a3

Feb 15 01:05:49 2018 tweaked player movement by changing inertia 17c81fccacfe1e0d3b2cda8194af5d8ce7ea843c

Feb 15 18:53:22 2018 fixed shields added destructable asteroids algorithm got
categories mask group indexes semi working

b3997979735f2a8ec6779def07b09038686b7e87

Feb 15 21:08:58 2018 gave AI ability to shoot at player when within FOV needs
more tweaking. bug Shield doesnt turn off completely

33795839c2bfa2a94a261e3dca8e8415db9648ea

Feb 16 02:18:28 2018 Attempting to fix physics bug where body deleteed and
begin contact occurs attempt to get body of deleted object
throws nil err added ranking to Director

216e5ca2f0e33e142a5ca278d9d5b851aef1115c

Feb 16 17:08:02 2018 improved astroid breakup algo fixed physics bug men-
tioned previously was to do with player and ship not being
removed in same work tick because not added to pBuffer

de0e8293d517b0fd1182c3efa611761bf5f0a63b

Feb 16 17:10:25 2018 removed old code from object 414443239a193085427c6de03ecae479e7b8e6e1

Feb 18 21:31:01 2018 Added stat pickups and rot scale functions 67eb76273e077a54b561b6dafa73b5e99731ce12

23

Date Commit message URL

Feb 19 20:26:17 2018 Added LineExplosions b4471c5b455c9664c68863ce2da57580c841b2bd

Feb 20 01:26:54 2018 Added some SFX tweaked some classes 7c667ef486e5ac5029cb353a7291b5abbbeeb342

Feb 21 19:06:23 2018 probably done 40041e155389faa5f95039e62e76f1bfca1d7eeb

Feb 21 19:07:05 2018 Update README.md aece3cc58cf0b594bc0a27a5feee264d03d0ecff

Mar 7 13:35:28 2018 Delete lssx.tex 09d3b06227b5befe3f9ea190e8740c17b9690609

Mar 7 13:36:12 2018 Update README.md 6c3fc5bd7cf0c7793f0a92aaaa99f25111d1c222

Mar 7 13:36:54 2018 Update README.md 6267abcaf8815331153844b6e1620546ed3ef653

Mar 7 17:24:04 2018 Added more sound effects edited Bullet Pickup main De-
bugger and Director

1253dc8344d37870c5802f41ee116026b79fe946

Mar 7 17:24:18 2018 Merge branch master of https github.com twentytwoo
zephyr

9c7953d914a8f8fb4bbf92bb0c6a22367bb8e08e

Mar 11 21:58:18 2018 Game reset works player can respawn without restarting
game globals mostly cleaned

6d2ba3bc75a0cdd59602682001e2fd1b2e3c5bf1

Mar 13 00:51:36 2018 Lots of polish added 2155d9990fd265c89aa07255916ee7b2bc4ba972

Mar 13 01:28:34 2018 Director code almost done, added enemy spawning over
time, modified pickups

b83fedff116641ac7c8d35beb78baad2f3386975

Mar 13 18:35:30 2018 More director mods, spawns pickups and asteroids now c668dcf2dd57af2f3d9ed855b3bb71f0941ca673

Mar 13 19:14:45 2018 Update README.md c0baba75638bd99684162bf23a3705edb8f21f0f

Mar 13 22:32:09 2018 rewrote position code for ui such that game can be played
fullscreen

73886e5694c23f9496762e5736675edc2e1c039d

Mar 13 22:32:22 2018 Merge branch master of https github.com twentytwoo
zephyr

b0a91c962b68e1d7867bbeb184f40651e705b1ad

Mar 15 21:50:59 2018 separate removal buffer hopefully removes box2d nil obj
errs

a14871a5d1a8a9f2e33059cc92d4897eafb6b003

Mar 15 21:51:40 2018 fixed syntax bug 35e6fc2ef0ffa813190b4b60c2c4541e2110831a

Mar 15 22:00:11 2018 Balanced pickups to give more or less resources depnding
on remaining value

640e48481c1dbb4a2b30661b219aaec068339697

Mar 15 22:43:37 2018 time survived fixed added correct pausing previously
timers fluxers still being updated added a basic pause
screen

5132ccce77b9c7f9f87507a9c3c5b6f4311292f5

Mar 16 00:08:50 2018 Sent Asteroids to family therapy improved their parent
child relationship added scoring stats corrected time in
match in gameover

5013bc051643dcdf10fe59124684b7526322e3e7

Mar 17 02:38:09 2018 added love splash 8bfad19899b892002df2d186cad944f091157f02

Mar 17 20:18:40 2018 Update README.md d8ab25152cab7f9ca175e84d76e86616f56d60dc

Mar 18 22:06:00 2018 Added slo motion 5ac90da1cfae7f9338270453f8c9ef5b096a83cc

Mar 18 22:06:11 2018 Merge branch master of https github.com twentytwoo
zephyr

69d1432d687fabcac5da28b76d0a23791aa85a41

Mar 19 22:43:54 2018 added larger enemy hitbox aa7feb802f00e06d91ed9ee495a5f4c3fdc64bbb

Mar 20 01:29:19 2018 killstreak ui code added 9969d822887cbba652812384602b1c4ccc1efe05

Mar 20 01:48:41 2018 new song modified sound levels c18246bd06e0eaee469739f79c35fdfe8b024aea

Mar 20 23:53:26 2018 increased difficulty over time by spawning more enemies
fixed bullet clipping shield hitting shield causing dmg in-
creased pickup flashing time to a minimum of 1 second

b52dc08bcdadc1abe52388845d9d3c31046b4ad7

24 ttxi

lssx, LÖVE Space Shooter X

Date Commit message URL

Mar 21 18:08:29 2018 added timer difficulty scaler fixed score countint to go only
from when player can move

acfb835693f4be6a87a88f39d493b8679625f14b

Table 1 git Commit log

25

26 ttxi

lssx, LÖVE Space Shooter X

9. Bibliography

References

[1] I-PROGRAMMER. (2018). Sage - computer of the cold war,
[Online]. Available: http://www.i-programmer.info/history/9-
machines/441-age.html (visited on 03/27/2018).

[2] IBM. (2018). The first national air defense network, [Online].
Available: http://www-03.ibm.com/ibm/history/ibm100/us/en/
icons/sage/ (visited on 03/27/2018).

[3] TESTED. (2018). How sci-fi propaganda art influenced the us
and soviet space race, [Online]. Available: http://www.tested.
com/art / 43726- sci_fi - art - propaganda- across - cultures/
(visited on 03/27/2018).

[4] Wikipedia. (2018). List of cape canaveral and merritt island
launch sites, [Online]. Available: https://en.wikipedia.org/wiki/
List_of_Cape_Canaveral_and_Merritt_Island_launch_sites
(visited on 03/27/2018).

[5] A. Games. (2017). Reassembly homepage, [Online]. Avail-
able: https : / / www . anisopteragames . com (visited on
12/05/2017).

[6] ——, (2017). Reassembly wikipedia, [Online]. Available: https:
//en.wikipedia.org/wiki/Reassembly_(video_game (visited on
03/26/2018).

[7] Wikipedia. (2018). Entity component system, [Online]. Avail-
able: https : / / en . wikipedia . org / wiki / Entity % E2 % 80 %
93component%E2%80%93system (visited on 03/06/2018).

[8] SSYGEN. (2018). Ecs vs yolo coding, [Online]. Available:
https : / / github. com /SSYGEN/blog / issues /24 (visited on
03/06/2018).

[9] twentytwoo. (2017). Classes creation test code, [On-
line]. Available: https : / / gist . github . com / twentytwoo /
38df41452b7ab047c316b0a8cdf34252 (visited on
12/06/2017).

[10] ——, (2017). Methods test code, [Online]. Avail-
able: https : / / gist . github . com / twentytwoo /
7f23960802416bf175fb557fe3ee9781 (visited on
12/06/2017).

[11] ——, (2017). Inheritance test code, [Online]. Avail-
able: https : / / gist . github . com / twentytwoo /
75419cc33364571cd2cfc45d506c6d71 (visited on
12/06/2017).

[12] Box2D. (2017). A 2d physics engine for games, [Online]. Avail-
able: http://box2d.org (visited on 12/06/2017).

[13] Rude. (2017). Love.physics, [Online]. Available: https://love2d.
org/wiki/love.physics (visited on 12/06/2017).

[14] rxi. (2017). Flux, [Online]. Available: https://github.com/rxi/flux
(visited on 12/06/2017).

[15] twentytwoo. (2017). Zephyr, [Online]. Available: https://github.
com/twentytwoo/zephyr (visited on 12/05/2017).

[16] vrld. (2017). Hump camera, [Online]. Available: http://hump.
readthedocs.io/en/latest/camera.html (visited on 12/05/2017).

[17] STALKER-X. (2017). Ssygen (adn), [Online]. Available: https:
//github.com/SSYGEN/STALKER-X (visited on 12/05/2017).

[18] Rude. (2017). Body:setbullet.

[19] Stencyl. (2017). Continuous collision detection (ccd), [Online].
Available: http: / /www.stencyl .com/help/view/continuous-
collision-detection/ (visited on 12/07/2017).

[20] videah. (2018). Splashy, [Online]. Available: https://github.
com/videah/splashy (visited on 03/07/2018).

[21] Leafo. (2018). Itch.io, [Online]. Available: https://en.wikipedia.
org/wiki/Itch.io (visited on 03/27/2018).

List of Figures

1 SAGE computer display23 2
2 US Space Race propaganda poster24 3
3 Subtle nod to CCFAS 3
4 BYTEPATH gameplay 3
5 Reassembly gameplay 4
6 DATA WING gameplay 4
7 Camera parallax 4
8 LÖVE logo . 5
9 Pacman ghost ECS 5
10 Effort against time with regards to ECS 5
11 A simple class structure 6
13 A rapidly prototyped Box2D spaceship simulator . . 9
14 Struct detection and other shape translation 9
15 The process of cloning other bodies contents into self 9
16 Structs . 9
12 Box2D explained 10
17 Before struct contact 10
18 Bodies cloned and joined together 10
19 . 10
20 . 10
21 . 10
22 Process of moving multiple shapes into one body . 10
23 Flood fill with connected shapes 10
24 Process of flood filling to see which shapes are still

connected . 10
25 Procedurally generated asteroids 11
26 All the different kinds of easing functions 12
27 Particle trails on a player ship 12
28 Ammo pickups at initial development 12
29 Polished pickups 12
30 Player movement explanation 13
31 The player . 13
32 A simple hash table example 13
33 Before collision . 14
34 After collision . 14
35 Finite State Machine example 15
36 Different types of LineExplosion’s 16
37 Player HUD . 16
38 Without CCD . 17
39 With CCD . 17
40 lssx itch.io change-log 19
41 lssx itch.io page . 19
42 lssx itch.io change-log 20
43 Screenshot 1 . 20
44 Screenshot 2 . 20
45 Screenshot 3 . 20
46 Week by week project plan 29

List of Tables

1 git Commit log . 25

23 IBM. (2018). The first national air defense network, [Online]. Available: http://www-
03.ibm.com/ibm/history/ibm100/us/en/icons/sage/ (visited on 03/27/2018).

24 TESTED. (2018). How sci-fi propaganda art influenced the us and soviet space race,
[Online]. Available: http://www.tested.com/art/43726-sci_fi-art-propaganda-across-
cultures/ (visited on 03/27/2018).

27

http://www.i-programmer.info/history/9-machines/441-age.html
http://www.i-programmer.info/history/9-machines/441-age.html
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/sage/
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/sage/
http://www.tested.com/art/43726-sci_fi-art-propaganda-across-cultures/
http://www.tested.com/art/43726-sci_fi-art-propaganda-across-cultures/
https://en.wikipedia.org/wiki/List_of_Cape_Canaveral_and_Merritt_Island_launch_sites
https://en.wikipedia.org/wiki/List_of_Cape_Canaveral_and_Merritt_Island_launch_sites
https://www.anisopteragames.com
https://en.wikipedia.org/wiki/Reassembly_(video_game
https://en.wikipedia.org/wiki/Reassembly_(video_game
https://en.wikipedia.org/wiki/Entity%E2%80%93component%E2%80%93system
https://en.wikipedia.org/wiki/Entity%E2%80%93component%E2%80%93system
https://github.com/SSYGEN/blog/issues/24
https://gist.github.com/twentytwoo/38df41452b7ab047c316b0a8cdf34252
https://gist.github.com/twentytwoo/38df41452b7ab047c316b0a8cdf34252
https://gist.github.com/twentytwoo/7f23960802416bf175fb557fe3ee9781
https://gist.github.com/twentytwoo/7f23960802416bf175fb557fe3ee9781
https://gist.github.com/twentytwoo/75419cc33364571cd2cfc45d506c6d71
https://gist.github.com/twentytwoo/75419cc33364571cd2cfc45d506c6d71
http://box2d.org
https://love2d.org/wiki/love.physics
https://love2d.org/wiki/love.physics
https://github.com/rxi/flux
https://github.com/twentytwoo/zephyr
https://github.com/twentytwoo/zephyr
http://hump.readthedocs.io/en/latest/camera.html
http://hump.readthedocs.io/en/latest/camera.html
https://github.com/SSYGEN/STALKER-X
https://github.com/SSYGEN/STALKER-X
http://www.stencyl.com/help/view/continuous-collision-detection/
http://www.stencyl.com/help/view/continuous-collision-detection/
https://github.com/videah/splashy
https://github.com/videah/splashy
https://en.wikipedia.org/wiki/Itch.io
https://en.wikipedia.org/wiki/Itch.io
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/sage/
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/sage/
http://www.tested.com/art/43726-sci_fi-art-propaganda-across-cultures/
http://www.tested.com/art/43726-sci_fi-art-propaganda-across-cultures/

List of Listings

1 MoonScript OO example 6
2 OO Test: 1 . 6
3 OO Test: 2 . 7
4 OO Test: 3 . 7
5 MoonScript examplar 7
6 Compiled MoonScript code 8
7 Setting Box2D world callbacks 8
8 General physics handling 8
9 Old PG background code 11
10 flux.lua example . 11
11 UUID generation function 13
12 Elegant beginContact function 14
13 Base object class 14
14 Object beginContact example 14
15 Polygon contacts 14
16 Custom hash code 14

28 ttxi

lssx, LÖVE Space Shooter X

2017 2018

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A01

Identify topic

Identify aims

Produce project plan

A02

Relevant research

Practical investigation

Assign spec. parameters

A03

Develop prototype

Construct game engine

Develop game content

Debugging

A04

Play-testing and Q&A

Make improvements from testing

Publish

Presentation and Review

Figure 46 Week by week project plan

29

	Project Goals
	Relevant Research
	Game concepts
	Cold War paranoia
	Space race

	Similar titles
	BYTEPATH
	Reassembly
	DATA WING
	Conclusion

	Why LÖVE?
	Architecture
	Entity Component System
	Object Oriented Programming

	MoonScript vs. Lua with respect to OO
	Classes
	Methods
	Inheritance

	Box2D, the physics engine
	Worlds
	Bodies
	Fixtures
	Shapes
	Joints
	Contacts

	Development
	Rapid prototyping
	Procedurally generated content
	Asteroids
	Particles

	Linear Interpolation and tweening
	Fuel, Health, Ammo, Slo-mo and Oxygen
	Pickups
	Players and Ships
	Player and Game controls

	Creating a Box2D wrapper
	Hash tables
	Custom Hashes

	Cameras
	hump.camera
	STALKER-X

	Artificial Intelligence
	Finite State Machine
	Path finding

	Director and Game loop
	UI
	LineExplosion
	HUD

	Projectiles
	Components
	Emitters
	Shields

	States
	Splash
	MainMenu
	Game

	Documentation
	lssx
	Object
	PhysicsObject
	PolygonPhysicsShape
	CirclePhysicsShape
	ChainPhysicsShape
	Ship
	Asteroid
	Entity
	Player
	Enemy
	Projectile
	Bullet
	Pickup
	Shield
	Cross
	FlashSq
	LineExplosion
	HUD.elements.bar

	Play-testing and improvements
	Q&A
	Q&A results
	Improvements

	Publishing
	itch.io

	Project overview
	Final thoughts

	Screenshots
	Commit log
	Bibliography

