
lssx, LÖVE Space Shooter X

Artifact
Extended Project Qualification
2018

ttxi - JLC

1

Gameplay and Statistics

https://youtu.be/LxWgUlpdvgs

• ~3000 lines of code
• approx. 100 hours spent
• 97 commits

2

https://youtu.be/LxWgUlpdvgs

Why lssx?

Several years experience in programming

Never finished a game before

Developing a game requires a multitude of skills ranging from
design, mathematics, physics and logic.

Future university degree requires programming.

Fun.

3

Project aims

Aims were to create a small-scoped space-esque shoot-em-up
with semi-realistic physics and retro graphics, akin to
Asteroids, Space Invaders.

• Finish it
• Enjoyable, re-playable and simple experience
• Release onto itch.io

4

Inspiration & Research

Cold war paranoia, fantasy systems (Star Wars ICBM defence) -
Training simulator for cold-war pilots.

• BYTEPATH
• Reassembly
• DATA WING

Figure 1: BYTEPATH 5

Reassembly

Figure 2: Reassembly

Vector graphics, heavy use of lighting and shaders, minimal UI
6

DATA WING

Figure 3: DATA WING

Basic yet enjoyable movement mechanics, camera parallax.
7

Architecture

• Lua, a powerful, efficient, lightweight, embeddable
scripting language, used in programs such as Adobe
Lightroom and Civ5.

• LÖVE, 2D game development framework, used in
commercial games such as ”Move or Die”.

• Box2D, 2D physics engine used to realistically simulate
interaction between rigid bodies, in development for over
10 years.

Decided to use Lua and LÖVE because of prior experience with
both, I didn’t want to learn a new language whilst making a
new project.

8

Lua and LÖVE

function love.draw()
love.graphics.print("Hello World!", 400, 300)
love.graphics.circle("line", 500, 300, 10)
love.graphics.rectangle("line", 380, 300, 10, 40)

end

9

Box2D

Box2D powers almost all physics interactions within the game,
it’s proven to be reliable and fast and also has plenty
documentation to learn from.

World
Where all the bodies live, used to set collision callbacks (beginContact, preSolve etc.)
Defines global gravity, tunes the physics simulation.

Body
No physical shape - controls mass, velocity, angular velocity., angle etc.

Fixture
Size and shape (polygon/ circle/
rectangle), adds to mass of Body -
doesn’t collide!
Restitution (velocity before:after ratio),
Friction, Density (mass/area)
Can be a sensor

Shape
Resolves collisions
(create a shape -> add it to fixture)

Fixture
A body can have
multiple fixtures, which
in turn have their own,
individual shapes.

Shape
The same shape can
be used with multiple
different fixtures

Body
Bodies can be
connected via joints,
there are several joint
types that control how
the two(+) bodies
interact.

Fixture

Shape

Joint
No body, present

in World
Different types of

joints simulate
the interaction

between objects
(bodies) to form
hinges / ropes /

pulleys etc.

Fixture (sensor)
self.isSensor = true
self:setSensor(true)
Still has mass, but shapes will
not have collision resolution -
instead the world/body
contact callbacks
(begin-contact & end-contact)
will be called.

Shape

Contact
A special case which lists, in sequence, all the collisions in the
world between Fixtures, world:getContactList().

Contacts make use contact callbacks which can call certain
functions when certain classes of fixtures collide. This allows
you to use contact masks, which trigger certain functions
depending on the fixtures mask (see :setFilterData).

The existence of a contact in the list does not mean that the
two fixtures of the contact are actually touching - it only means
their AABBs are touching. You can use isTouching() to
check if they are physically touching.

Contact
Bodies have their own
contact list that you can
specifically access.

This list can change in
the middle of a
world:update(), so if
all collisions are not
handled, some may be
ignored.

Body

Fixture

Category
Is like saying, “I am a …”
For example;
I am a cat and I will collide with cats and mice.
I am a mouse and I will collide with cats, but not other mice.

The category is for defining what you are, (mouse/cat)

The default behaviour is:
I am a thing and I will collide with every other thing., since
all fixtures by default have the same category/mask.

Mask
Mask is like saying, “I will collide with a …”, (see Category)
The Category and Mask work together, both conditions
must be satisfied such that both fixtures are allowed to
collide.

The mask is for defining what you will collide with.

Group Index
The group index overrides the Category and Mask. It can be
used to group together fixtures that should either collide or
never collide (think friendly fire in games for bullets).

See: http://www.iforce2d.net/b2dtut/collision-filtering

Figure 4: Anatomy of Box2D
10

Important Box2D concepts

• Body, defines properties of an object you cannot see,
density, location, rotational inertia and others.

• Fixture, used to define material properties of an object,
e.g. friction, restitution.

• Shape, defines the actual physical shape for collisions.

Multiple fixtures can be added to a Body to create different
forms.

Shapes inside Fixtures, Fixtures inside Bodies.

11

How do you even write a game?

Idea→ Program idea→ Test→ Debug / improve→ Repeat

Organization is paramount, but not that much.

Most popular ways of developing bigger-than-small projects is
either with an Entity Component System or via Object
Oriented Programming.

12

Object Oriented Programming

Object Oriented Programming is a paradigm which attempts to
define the behaviour of real world objects via inheriting
behaviours.

OOP allows for Polymorphism, Encapsulation and Abstraction.
Large projects can be created in a sane, organised fashion.

13

Entity Component System

ECS follows composition over inheritance.
Every entity consists of components which add or define
additional behaviour. ECS is better for very large projects
because of it’s inherent modularity.

A Pacman ghost has some of the following behaviours,

14

ECS or OOP?

Figure 5: https://github.com/SSYGEN/blog/issues/24
15

Choosing an OO library

A library is a set of reusable functions that perform a set of
usually complex tasks that would take a long time to develop
yourself.
Lua doesn’t natively support OO, however the Lua community
have created a number of libraries, that allow you to do OOP
with Lua.
A series of tests was performed on the most popular OO
libraries to see which was the fastest/memory efficient.

• Creating instances of objects
• Performing methods
• Testing inheritance

From 10 to 1 million objects.

16

Creating objects

101 102 103 104 105 106
10−5

10−4

10−3

10−2

10−1

100

Number of objects created

Ti
m
e
(s
)

MoonScript
classic

middleclass
hump.class

17

Performing methods

101 102 103 104 105 106
10−6

10−5

10−4

10−3

10−2

10−1

Number of methods ran

Ti
m
e
(s
)

MoonScript
classic

middleclass
hump.class

18

Testing inheritance

101 102 103 104 105 106
10−5

10−4

10−3

10−2

10−1

100

Number of inherited objects created

Ti
m
e
(s
)

MoonScript
classic

middleclass
hump.class

19

Results and conclusion

MoonScript is the leader when dealing with a smaller amount
of objects (< 100).

MoonScript is not a library, but is a dynamic scripting language
that compiles into Lua, so it can be used with LÖVE.

MoonScript chosen as it has the fastest OO, has greater
readability because of the reduced syntactic sugar and
therefore errors less likely to be made.

MoonScript→ Lua⇒ LOVE + Box2D

20

MoonScript compiled into Lua

The following MoonScript code:

Director.gameStart = () ->
Timer.every 2, ->
Pickup(math.random(2000), math.random(2000))
Asteroid(100+math.random(1800),

100+math.random(1800))↪→

Is compiled into the following Lua code:

Director.gameStart = function()
return Timer.every(2, function()
Pickup(math.random(2000), math.random(2000))
return Asteroid(100 + math.random(1800), 100 +

math.random(1800))↪→

end)
end

Visually less lines of code. 21

Programming Philosophies

• Ease-of-use, complexity should be avoided, even at the
cost of speed

• Modularity, the engine should be easily extendable
through modular programming

• Readability, the code should be easy to read, with most
contents’ operation being understandable at first-viewing

22

Rapid prototyping

A small prototype was created in under a week to test if the
project was feasible.

Being a prototype, all the code used had to be re-written to
make sure the engine was scalable to the project demands

23

Deciding on a game loop

Initially toyed around with the idea of destructible ships,
thrusters, weapons etc. could be shot off, impairing your ship’s
abilities - a la Reassembly.

After two days of experimenting with the attachment code
using a flood fill algorithm I decided this direction would be
too complicated.

24

zephyr

Mid-way through the project I realised the current method of
handling collisions was un-scalable and had to be re-worked.

I created zephyr, a Box2D wrapper designed to simplify physics
management by streamlining collision detection and
resolution between Box2D objects.

Approx 750 lines of code.

Physics.beginContact = (a, b, coll) ->
-- pass a->b and b->a
lssx.objects[a\getUserData().hash]\beginContact(b)
lssx.objects[b\getUserData().hash]\beginContact(a)

25

zephyr and Entity Management

The main feature of zephyr is it’s fast object identification with
the use of Universally Unique IDentifier’s organised in a
hash-table.

A typical UUID looks like:
0264d794-e06a-4a8c-b018-d61aee5aa2b3
zephyr also allows colliding fixtures to communicate with each
other and change each others values by the use of a buffer.

26

zephyr and Entity Management cont.

A typical interaction between two objects prints the following
to the debug log.

This shows a collision between an Asteroid and Bullet, with
their UUID’s defined as k, each object was found within 2
milliseconds.

27

Procedural Generation

Procedural Generation is a method of computationally
generating content. https://youtu.be/O9KZFE1G6b0

Figure 6: Procedurally generated content

All explosions, asteroids, particle effects and
HP/ammo/fuel/oxygen pickups are procedurally generated
and placed throughout the world.

28

https://youtu.be/O9KZFE1G6b0

Artificial Intelligence

Player ship AI uses an algorithm to follow the players cursor by
applying forces to the ship. - Natural movement

29

AI cont.

Enemy AI works in a similar fashion to the Player’s, except it
follows the players position.

Enemy AI also uses a Finite State Machine to decide on what
action it should take from: Idle, Chasing, Firing and Retreat.

Figure 7: Red: Fire, Yellow: Chase
States are decided based on HP, player distance and object
count in the world.

30

Resources, HUD (Heads-Up-Display)

Displays player’s Ship details, introduces a layer of difficulty
for player to manage.

• Ammo, no longer able to shoot
• Fuel, speed significantly reduced
• Oxygen, lose HP over time
• HP (Health Points), when = 0, game over

These can be restored by collecting pickups scattered
throughout the world.

31

Timers and ”tweening”

• Timers, allows for events to be repeated / done at specific
intervals

• ”Tweening”, In-betweening, modify a value over time with
different easing functions

-- Toggle light on and off every second
Timer.every(1, -> lamp\toggleLight())

-- Moves "ball" object to the position 200, 300
over 4 seconds↪→

flux.to(ball, 4, { x: 200, y: 300 })

Timers used to spawn new enemies and pickups in the world.
Tweening largely used in UI, e.g. particle effects, explosions etc.

32

Shaders and Cameras

• Shaders, post-processing effect that modifies the
attributes of pixels, e.g. blurring, shadows and specular
highlights.

• Cameras, allows for panning, zooming and scaling

e.g. When player hit by a bullet the following occurs,

• Instance of class LineExplosion at player x/y created
• Tween chromatic aberration strength to random value
• Shake screen by x amount for y seconds
• Blink screen for 0.1±x seconds

33

Scoring

Higher score is better.
Staying alive for longer grants higher score.
Destroying more enemies/asteroids and collecting pickups
increases overall score.

A rank is calculated from overall score:
ACE, SS, S, A, B, C, D, E, F

34

Playtesting and Feedback

Feedback gathered from 8 play-testers on what they
liked/disliked and would like to see added/removed.
Common positive/negative feedback included:

• ”well thought-out aesthetic”
• ”fast, enjoyable pace and high learning curve”
• ”annoying, jarring shooting noise”
• ”too much camera shake”

Players rated game in current state an average of 8.5/10.

35

Release

After resolving previous issues with the game, lssx was now
ready for release.
Released for free with an optional donation feature on itch.io,
a website for users to host, sell and download indie video
games.

Live at : https://ttxi.itch.io/lssx 36

https://ttxi.itch.io/lssx

Final thoughts

Overall pleased with outcome, achieved my goal of making a
short enjoyable game with a fair amount of re-playability.
Gained a strong understanding of Box2D and appreciation for
simple, elegant solutions to problems.

Things learned:

• Physics is hard
• I don’t like gamedev as much as I thought
• Desire to work on a project drops off exponentially
• 90% effort required for the last 10% of work

Areas I’d like to improve:

• Improve zephyr
• Add more enemy/weapon types

37

Special thanks to,

• SSYGEN, STALKER-X camera library
• rxi, flux.lua tweening library, lovebird browser console
• vrld, HUMP utilities, moonshine post-processing library
• videah, splash-screen library
• Taehl, sound management library
• bfxr, used to generate game audio
• slime et al., LÖVE framework
• leafo, MoonScript programming language

https://github.com/twentytwoo/lssx
https://github.com/twentytwoo/zephyr

All software released under MIT license. - LATEX

38

https://github.com/twentytwoo/lssx
https://github.com/twentytwoo/zephyr

