
lssx, LOVE Space Shooter X

JLC

2018

Project aims

Aims are to create a casual space simulation shoot-em-up with
semi-realistic physics and retro graphics, akin games in the 1st/2nd
generation of console, circa. 80’s

▶ Release onto itch.io

▶ Enjoyable, re-playable and simple experience

Inspiration

▶ BYTEPATH

▶ Reassembly

▶ DATA WING

Figure 1: BYTEPATH
Figure 2: Reassembly

Figure 3: DATA WING

Early computer graphics and design, similar to the Bell Labs /
UNIX aesthetic. Cold war paranoia, fantasy systems (Star Wars
ICBM defence) - Training simulator for cold-war pilots.

Architecture

LOVE, 2D game development framework, provides interface
between code and graphics.

function love.draw()

love.graphics.print("Hello World!", 400, 300)

end

Box2D, 2D physics engine for simulating the interaction between
rigid bodies, love.physics

function someShape:new(x, y, w, h, type, density)

self.body = love.physics.newBody(world, x, y, type)

self.shape = love.physics.newRectangleShape(w, h)

self.fixture = love.physics.newFixture(self.body,

self.shape, density)↪→

end

Box2D

Box2D is a highly tested, reliable and complete 2D physics engine
that powers almost all interactions within the game.

World
Where all the bodies live, used to set collision callbacks (beginContact, preSolve etc.)
Defines global gravity, tunes the physics simulation.

Body
No physical shape - controls mass, velocity, angular velocity., angle etc.

Fixture
Size and shape (polygon/ circle/
rectangle), adds to mass of Body -
doesn’t collide!
Restitution (velocity before:after ratio),
Friction, Density (mass/area)
Can be a sensor

Shape
Resolves collisions
(create a shape -> add it to fixture)

Fixture
A body can have
multiple fixtures, which
in turn have their own,
individual shapes.

Shape
The same shape can
be used with multiple
different fixtures

Body
Bodies can be
connected via joints,
there are several joint
types that control how
the two(+) bodies
interact.

Fixture

Shape

Joint
No body, present

in World
Different types of

joints simulate
the interaction

between objects
(bodies) to form
hinges / ropes /

pulleys etc.

Fixture (sensor)
self.isSensor = true
self:setSensor(true)
Still has mass, but shapes will
not have collision resolution -
instead the world/body
contact callbacks
(begin-contact & end-contact)
will be called.

Shape

Contact
A special case which lists, in sequence, all the collisions in the
world between Fixtures, world:getContactList().

Contacts make use contact callbacks which can call certain
functions when certain classes of fixtures collide. This allows
you to use contact masks, which trigger certain functions
depending on the fixtures mask (see :setFilterData).

The existence of a contact in the list does not mean that the
two fixtures of the contact are actually touching - it only means
their AABBs are touching. You can use isTouching() to
check if they are physically touching.

Contact
Bodies have their own
contact list that you can
specifically access.

This list can change in
the middle of a
world:update(), so if
all collisions are not
handled, some may be
ignored.

Body

Fixture

Category
Is like saying, “I am a …”
For example;
I am a cat and I will collide with cats and mice.
I am a mouse and I will collide with cats, but not other mice.

The category is for defining what you are, (mouse/cat)

The default behaviour is:
I am a thing and I will collide with every other thing., since
all fixtures by default have the same category/mask.

Mask
Mask is like saying, “I will collide with a …”, (see Category)
The Category and Mask work together, both conditions
must be satisfied such that both fixtures are allowed to
collide.

The mask is for defining what you will collide with.

Group Index
The group index overrides the Category and Mask. It can be
used to group together fixtures that should either collide or
never collide (think friendly fire in games for bullets).

See: http://www.iforce2d.net/b2dtut/collision-filtering

Figure 4: Anatomy of Box2D

LOVE uses an implementation of Box2D called love.physics which
is essentially the same - but in Lua.

Object Oriented Programming

Object Oriented Programming is a programming paradigm that
attempts to deconstruct complex objects into simple components
that follow a parent-child relationship, for example:

Class Prey Class Predator

Method: Catch()Method: Hide()

Class Animal

Method: Eat(), Sleep(), Die()

Class Cat

Method: Meow()

Class Mouse

Method: Sprint()

Class Dog

Method: Bark()

Figure 5: Basic OO structure

Objects have classes, parents, values and methods. This allows an
OO system emulate encapsulation, polymorphism and inheritance.

Choosing an OO library

Since Lua doesn’t natively support OO without the use of
metatables and metamethods (which becomes incredibly verbose
quickly) - the Lua community has created a series of libraries which
simplify the use of OOP.

A series of tests was performed to see which library was the most
memory efficient and fastest.

classic, hump.class, middleclass and a language that compiles into
Lua called MoonScript were all tested using a small program which
recorded time taken for each library to:

▶ Create objects

▶ Perform methods

▶ Create objects with a parent (test inheritance)

From 10 to 1 million objects.

Creating objects

101 102 103 104 105 106
10−5

10−4

10−3

10−2

10−1

100

Number of objects created

T
im

e
(s
)

MoonScript
classic

middleclass
hump.class

Performing methods

101 102 103 104 105 106
10−6

10−5

10−4

10−3

10−2

10−1

Number of methods ran

T
im

e
(s
)

MoonScript
classic

middleclass
hump.class

Testing inheritance

101 102 103 104 105 106
10−5

10−4

10−3

10−2

10−1

100

Number of inherited objects created

T
im

e
(s
)

MoonScript
classic

middleclass
hump.class

Results and conclusion

The results show a close tie with classic and hump.class -
middleclass lags behind because of the quantity of features it has.

MoonScript is the leader with a small amount of objects (< 100).

MoonScript was chosen to be the programming language for this
project because it applies a level of abstraction above Lua which
means less code is required to write the same thing. The compiling
process allows for adjustments to be made to the code which
allows it to run faster prior to the program running.

MoonScript compiled into Lua

The following MoonScript code:

Director.gameStart = () ->

Timer.every 2, ->

Pickup(math.random(2000), math.random(2000))

Asteroid(100+math.random(1800), 100+math.random(1800))

Is compiled into the following Lua code:

Director.gameStart = function()

return Timer.every(2, function()

Pickup(math.random(2000), math.random(2000))

return Asteroid(100 + math.random(1800), 100 +

math.random(1800))↪→

end)

end

Total lines of code required to do the same thing is drastically
reduced, overall code readability increases and the chances of
errors arising from syntax is also reduced.

Programming Philosophies

▶ Ease-of-use, complexity should be avoided, even at the cost of
speed

▶ Modularity, the engine should be easily extendable through
modular programming

▶ Speed, the engine should run quickly

▶ Readability, the code should be easy to read, with most
contents’ operation being understandable at first-viewing

Rapid prototyping

A small prototype which used a majority of Box2Ds features was
created in under a week to test if the project was feasible.

Figure 6: Prototype

This prototype was created prior to the entity management system
and object orientation, as a result it had to be completely reworked
as it was unscalable.

zephyr

Mid-way through the project I realised the current method of
detecting and handling collisions involved a lot of repeated code
and was generally un-scalable.

zephyr is a Box2D wrapper designed to make the process of
creation easier by streamlining collision detection and resolution
between Box2D objects.

Collision detection for all objects is now done simply;

Physics.beginContact = (a, b, coll) ->

-- pass a->b and b->a

lssx.objects[a\getUserData().hash]\beginContact(b)

lssx.objects[b\getUserData().hash]\beginContact(a)

zephyr and Entity Management

The main feature of zephyr is it’s incredibly fast object
identification with the use of Universally Unique IDentifier’s
organised in a hashtable.

A typical UUID looks like:
0264d794-e06a-4a8c-b018-d61aee5aa2b3

Objects in the game can be accessed by their UUID via,
lssx.objects[UUID]

Physics fixtures have their UUID’s referenced in the fixture
UserData, such that when two fixtures collide, their UserData’s
act as pointers to the object in the global object table,
lssx.objects

zephyr and Entity Management cont.

A typical interaction between two objects prints the following to
the debug log.

7.365s [collision] -> Asteroid, k:

a49d3d23-42a8-4a55-8f37-f1dbdea8bda4↪→

7.365s [collision] -> Bullet, k:

a0730861-a8ad-4133-b09b-bacb7150f030↪→

This shows a collision between an Asteroid and Bullet, with their
UUID’s defined as k, each object was found within less than 0.001
second of each other.

Procedural Generation

Creating a large quantity of content on my own would take a
significant amount of time and effort. Procedural Generation is a
method of computationally generating content.

For example, an Asteroid is a polygon shape with a somewhat
random convex shape:

Figure 7: Procedurally generated asteroids

Asteroids also break apart when hit by projectiles, the broken down
asteroid shapes are also procedurally generated via algorithms.

AI

AI works in a similar fashion to the Player/’s ship, which follows
the mouse position. An algorithm roughly calculates the shortest
path from itself to the player, and a

HUD, Heads-Up-Display

Scoring

Gameplay link

https://youtu.be/eq3moJlIBcQ

